Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Bidirectional plasticity in fast-spiking GABA circuits by visual experience


Experience-dependent plasticity in the brain requires balanced excitation–inhibition1. How individual circuit elements contribute to plasticity outcome in complex neocortical networks remains unknown. Here we report an intracellular analysis of ocular dominance plasticity—the loss of acuity and cortical responsiveness for an eye deprived of vision in early life2,3. Unlike the typical progressive loss of pyramidal-cell bias, direct recording from fast-spiking cells in vivo reveals a counterintuitive initial shift towards the occluded eye followed by a late preference for the open eye, consistent with a spike-timing-dependent plasticity rule for these inhibitory neurons. Intracellular pharmacology confirms a dynamic switch of GABA (γ-aminobutyric acid) impact to pyramidal cells following deprivation in juvenile mice only. Together these results suggest that the bidirectional recruitment of an initially binocular GABA circuit may contribute to experience-dependent plasticity in the developing visual cortex.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Distinct plasticity profiles in pyramidal and fast-spiking visual cortical neurons.
Figure 2: Bidirectional plasticity in fast-spiking cells in vivo follows an STDP rule.
Figure 3: Intracellular GABA-receptor blockade in pyramidal neurons of visual cortex.
Figure 4: Dynamic GABA impact in single pyramidal cells with age and experience.


  1. 1

    Hensch, T. K. Critical period plasticity in local cortical circuits. Nature Rev. Neurosci. 6, 877–888 (2005)

    CAS  Article  Google Scholar 

  2. 2

    Wiesel, T. N. & Hubel, D. H. Single-cell responses in striate cortex of kittens deprived of vision in one eye. J. Neurophysiol. 26, 1003–1017 (1963)

    CAS  Article  Google Scholar 

  3. 3

    Prusky, G. T. & Douglas, R. M. Developmental plasticity of mouse visual acuity. Eur. J. Neurosci. 17, 167–173 (2003)

    Article  Google Scholar 

  4. 4

    Hensch, T. K. et al. Local GABA circuit control of experience-dependent plasticity in developing visual cortex. Science 282, 1504–1508 (1998)

    CAS  Article  Google Scholar 

  5. 5

    Gandhi, S. P., Yanagawa, Y. & Stryker, M. P. Delayed plasticity of inhibitory neurons in developing visual cortex. Proc. Natl Acad. Sci. USA 105, 16797–16802 (2008)

    ADS  CAS  Article  Google Scholar 

  6. 6

    Mainardi, M., Landi, S., Berardi, N., Maffei, L. & Pizzorusso, T. Reduced responsiveness to long-term monocular deprivation of parvalbumin neurons assessed by c-Fos staining in rat visual cortex. PLoS ONE 4, e4342 (2009)

    ADS  Article  Google Scholar 

  7. 7

    Fagiolini, M. et al. Specific GABA-A circuits for visual cortical plasticity. Science 303, 1681–1683 (2004)

    ADS  CAS  Article  Google Scholar 

  8. 8

    Katagiri, H., Fagiolini, M. & Hensch, T. K. Optimization of somatic inhibition at critical period onset. Neuron 53, 805–812 (2007)

    CAS  Article  Google Scholar 

  9. 9

    Di Cristo, G. et al. Activity-dependent PSA expression regulates inhibitory maturation and onset of critical period plasticity. Nature Neurosci. 10, 1569–1577 (2007)

    CAS  Article  Google Scholar 

  10. 10

    Sugiyama, S. et al. Experience-dependent transfer of Otx2 homeoprotein into the visual cortex activates postnatal plasticity. Cell 134, 508–520 (2008)

    CAS  Article  Google Scholar 

  11. 11

    McBain, C. J., Freund, T. F. & Mody, I. Glutamatergic synapses onto hippocampal interneurons: precision timing without lasting plasticity. Trends Neurosci. 22, 228–235 (1999)

    CAS  Article  Google Scholar 

  12. 12

    Lu, J. T., Li, C. Y., Zhao, J. P., Poo, M. M. & Zhang, X. H. Spike-timing-dependent plasticity of neocortical excitatory synapses on inhibitory interneurons depends on target cell type. J. Neurosci. 27, 9711–9720 (2007)

    CAS  Article  Google Scholar 

  13. 13

    Inomata, N., Tokutomi, N., Oyama, Y. & Akaike, N. Intracellular picrotoxin blocks pentobarbital-gated Cl- conductance. Neurosci. Res. 6, 72–75 (1988)

    CAS  Article  Google Scholar 

  14. 14

    Metherate, R. & Ashe, J. H. Ionic flux contributions to neocortical slow waves and nucleus basalis-mediated activation: whole-cell recordings in vivo. J. Neurosci. 13, 5312–5323 (1993)

    CAS  Article  Google Scholar 

  15. 15

    Mancilla, J. G. & Ulinski, P. S. Role of GABA(A)-mediated inhibition in controlling the responses of regular spiking cells in turtle visual cortex. Vis. Neurosci. 18, 9–24 (2001)

    CAS  Article  Google Scholar 

  16. 16

    Nelson, S., Toth, L., Sheth, B. & Sur, M. Orientation selectivity of cortical neurons during intracellular blockade of inhibition. Science 265, 774–777 (1994)

    ADS  CAS  Article  Google Scholar 

  17. 17

    Soltesz, I., Smetters, D. K. & Mody, I. Tonic inhibition originates from synapses close to the soma. Neuron 14, 1273–1283 (1995)

    CAS  Article  Google Scholar 

  18. 18

    Gordon, J. A. & Stryker, M. P. Experience-dependent plasticity of binocular responses in the primary visual cortex of the mouse. J. Neurosci. 16, 3274–3286 (1996)

    CAS  Article  Google Scholar 

  19. 19

    Dudek, S. M. & Friedlander, M. J. Intracellular blockade of inhibitory synaptic responses in visual cortical layer IV neurons. J. Neurophysiol. 75, 2167–2173 (1996)

    CAS  Article  Google Scholar 

  20. 20

    Duffy, F. H., Burchfiel, J. L. & Conway, J. L. Bicuculline reversal of deprivation amblyopia in the cat. Nature 260, 256–257 (1976)

    ADS  CAS  Article  Google Scholar 

  21. 21

    Maffei, A., Nataraj, K., Nelson, S. B. & Turrigiano, G. G. Potentiation of cortical inhibition by visual deprivation. Nature 443, 81–84 (2006)

    ADS  CAS  Article  Google Scholar 

  22. 22

    Pizzorusso, T. et al. Reactivation of ocular dominance plasticity in the adult visual cortex. Science 298, 1248–1251 (2002)

    ADS  CAS  Article  Google Scholar 

  23. 23

    Cruikshank, S. J., Lewis, T. J. & Connors, B. W. Synaptic basis for intense thalamocortical activation of feedforward inhibitory cells in neocortex. Nature Neurosci. 10, 462–468 (2007)

    CAS  Article  Google Scholar 

  24. 24

    Erisir, A. & Dreusicke, M. Quantitative morphology and postsynaptic targets of thalamocortical axons in critical period and adult ferret visual cortex. J. Comp. Neurol. 485, 11–31 (2005)

    Article  Google Scholar 

  25. 25

    Kaneko, M., Stellwagen, D., Malenka, R. C. & Stryker, M. P. Tumor necrosis factor-alpha mediates one component of competitive, experience-dependent plasticity in developing visual cortex. Neuron 58, 673–680 (2008)

    CAS  Article  Google Scholar 

  26. 26

    Frenkel, M. Y. & Bear, M. F. How monocular deprivation shifts ocular dominance in visual cortex of young mice. Neuron 44, 917–923 (2004)

    CAS  Article  Google Scholar 

  27. 27

    Zheng, W. & Knudsen, E. I. Gabaergic inhibition antagonizes adaptive adjustment of the owl’s auditory space map during the initial phase of plasticity. J. Neurosci. 21, 4356–4365 (2001)

    CAS  Article  Google Scholar 

  28. 28

    Lamsa, K. P., Heeroma, J. H., Somogyi, P., Rusakov, D. A. & Kullmann, D. M. Anti-Hebbian long-term potentiation in the hippocampal feedback inhibitory circuit. Science 315, 1262–1266 (2007)

    ADS  CAS  Article  Google Scholar 

  29. 29

    Mitchell, J. F., Sundberg, K. A. & Reynolds, J. H. Differential attention-dependent response modulation across cell classes in macaque visual area V4. Neuron 55, 131–141 (2007)

    CAS  Article  Google Scholar 

  30. 30

    Levi, D. M. & Li, R. W. Improving the performance of the amblyopic visual system. Phil. Trans. R. Soc. Lond. B 364, 399–407 (2009)

    Article  Google Scholar 

  31. 31

    Coleman, M. J. & Mooney, R. Synaptic transformations underlying highly selective auditory representations of learned birdsong. J. Neurosci. 24, 7251–7265 (2004)

    CAS  Article  Google Scholar 

  32. 32

    Volgushev, M., Pernberg, J. & Eysel, U. T. Comparison of the selectivity of postsynaptic potentials and spike responses in cat visual cortex. Eur. J. Neurosci. 12, 257–263 (2000)

    CAS  Article  Google Scholar 

  33. 33

    Izhikevich, E. M. Simple model of spiking neurons. IEEE Trans. Neural Netw. 14, 1569–1572 (2003)

    CAS  Article  Google Scholar 

  34. 34

    Stevens, C. F. & Zador, A. M. Input synchrony and the irregular firing of cortical neurons. Nature Neurosci. 1, 210–217 (1998)

    CAS  Article  Google Scholar 

  35. 35

    Durstewitz, D., Seamans, J. K. & Sejnowski, T. J. Dopamine-mediated stabilization of delay-period activity in a network model of prefrontal cortex. J. Neurophysiol. 83, 1733–1750 (2000)

    CAS  Article  Google Scholar 

  36. 36

    Erisir, A., Lau, D., Rudy, B. & Leonard, C. S. Function of specific K+ channels in sustained high-frequency firing of fast-spiking neocortical interneurons. J. Neurophysiol. 82, 2476–2489 (1999)

    CAS  Article  Google Scholar 

  37. 37

    Nomura, M., Fukai, T. & Aoyagi, T. Synchrony of fast-spiking interneurons interconnected by GABAergic and electrical synapses. Neural Comput. 15, 2179–2198 (2003)

    Article  Google Scholar 

Download references


We thank A. Scheuber for slice experiments, and T. Hosoya and S. Yanagihara for MATLAB programming advice. This work was supported in part by a Grant-in-aid for Scientific Research on Priority Areas (‘Integrative Brain Research’) from the Japanese Ministry of Education, Culture, Sports, Science & Technology (T.F., S.K. and T.K.H.).

Author Contributions T.K.H. and Y.Y.-S. designed the experiments; S.K., H.C. and T.F. formulated the computational models; Y.Y.-S. performed the intracellular recording in vivo; S.K. ran the simulations; and T.K.H., Y.Y.-S., S.K. and T.F. wrote the paper.

Author information



Corresponding author

Correspondence to Takao K. Hensch.

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1-5 with Legends and a Supplementary Reference for Supplementary Figure 2. (PDF 597 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Yazaki-Sugiyama, Y., Kang, S., Câteau, H. et al. Bidirectional plasticity in fast-spiking GABA circuits by visual experience. Nature 462, 218–221 (2009).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing