Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Unexpected consequences of a sudden and massive transposon amplification on rice gene expression


High-copy-number transposable elements comprise the majority of eukaryotic genomes where they are major contributors to gene and genome evolution1. However, it remains unclear how a host genome can survive a rapid burst of hundreds or thousands of insertions because such bursts are exceedingly rare in nature and therefore difficult to observe in real time2. In a previous study we reported that in a few rice strains the DNA transposon mPing was increasing its copy number by 40 per plant per generation3. Here we exploit the completely sequenced rice genome to determine 1,664 insertion sites using high-throughput sequencing of 24 individual rice plants and assess the impact of insertion on the expression of 710 genes by comparative microarray analysis. We find that the vast majority of transposable element insertions either upregulate or have no detectable effect on gene transcription. This modest impact reflects a surprising avoidance of exon insertions by mPing and a preference for insertion into 5′ flanking sequences of genes. Furthermore, we document the generation of new regulatory networks by a subset of mPing insertions that render adjacent genes stress inducible. As such, this study provides evidence for models first proposed previously4,5,6 for the involvement of transposable elements and other repetitive sequences in genome restructuring and gene regulation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Distribution of mPing insertions in strain EG4.
Figure 2: Impact of mPing -containing alleles on host transcription.
Figure 3: Cold inducibility of a transgene in Arabidopsis containing the Ping ORF1 promoter fused to GUS.
Figure 4: Stress-induction of transcription of alleles harbouring mPing.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

Data deposits

Sequence data has been submitted to GEO under accession number GSE15021.


  1. Feschotte, C. Transposable elements and the evolution of regulatory networks. Nature Rev. Genet. 9, 397–405 (2008)

    Article  CAS  Google Scholar 

  2. Feschotte, C., Jiang, N. & Wessler, S. R. Plant transposable elements: where genetics meet genomics. Nature Rev. Genet. 3, 329–341 (2002)

    Article  CAS  Google Scholar 

  3. Naito, K. et al. Dramatic amplification of a rice transposable element during recent domestication. Proc. Natl Acad. Sci. USA 103, 17620–17625 (2006)

    Article  ADS  CAS  Google Scholar 

  4. McClintock, B. The significance of responses of the genome to challenge. Science 226, 792–801 (1984)

    Article  ADS  CAS  Google Scholar 

  5. Britten, R. J. & Davidson, E. H. Gene regulation for higher cells: a theory. Science 165, 349–357 (1969)

    Article  ADS  CAS  Google Scholar 

  6. Britten, R. J. & Davidson, E. H. Repetitive and non-repetitive DNA sequences and a speculation on the origins of evolutionary novelty. Q. Rev. Biol. 46, 111–138 (1971)

    Article  CAS  Google Scholar 

  7. Jiang, N. et al. Active DNA transposon family in rice. Nature 421, 163–167 (2003)

    Article  ADS  CAS  Google Scholar 

  8. Kikuchi, K., Terauchi, K., Wada, M. & Hirano, H. Y. The plant MITE mPing is mobilized in anther culture. Nature 421, 167–170 (2003)

    Article  ADS  CAS  Google Scholar 

  9. Margulies, M. et al. Genome sequencing in microfabricated high-density picolitre reactors. Nature 437, 376–380 (2005)

    Article  ADS  CAS  Google Scholar 

  10. Arnold, C. & Hodgson, I. J. Vectorette PCR: a novel approach to genomic walking. PCR Methods Appl. 1, 39–42 (1991)

    Article  CAS  Google Scholar 

  11. Itoh, T. et al. Curated genome annotation of Oryza sativa ssp. japonica and comparative genome analysis with Arabidopsis thaliana . Genome Res. 17, 175–183 (2007)

    Article  Google Scholar 

  12. Cresse, A. D., Hulbert, S. H., Brown, W. E., Lucas, J. R. & Bennetzen, J. L. Mu1-related transposable elements of maize preferentially insert into low copy number DNA. Genetics 140, 315–324 (1995)

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Liao, G. C., Rehm, E. J. & Rubin, G. M. Insertion site preferences of the P transposable element in Drosophila melanogaster . Proc. Natl Acad. Sci. USA 97, 3347–3351 (2000)

    Article  ADS  CAS  Google Scholar 

  14. Miyao, A. et al. Target site specificity of the Tos17 retrotransposon shows a preference for insertion within genes and against insertion in retrotransposon-rich regions of the genome. Plant Cell 15, 1771–1780 (2003)

    Article  Google Scholar 

  15. Piffanelli, P. et al. Large-scale characterization of Tos17 insertion sites in a rice T-DNA mutant library. Plant Mol. Biol. 65, 587–601 (2007)

    Article  CAS  Google Scholar 

  16. Kolesnik, T. et al. Establishing an efficient Ac/Ds tagging system in rice: Large-scale analysis of Ds flanking sequences. Plant J. 37, 301–314 (2004)

    Article  CAS  Google Scholar 

  17. Yu, J. et al. A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296, 79–92 (2002)

    Article  ADS  CAS  Google Scholar 

  18. Mavrich, T. N. et al. Nucleosome organization in the Drosophila genome. Nature 453, 358–362 (2008)

    Article  ADS  CAS  Google Scholar 

  19. Kaplan, N. et al. The DNA-encoded nucleosome organization of a eukaryotic genome. Nature 458, 362–366 (2009)

    Article  ADS  CAS  Google Scholar 

  20. Shimono, M. et al. WRKY45 plays a crucial role in benzothiadiazole-inducible blast resistance. Plant Cell 19, 2064–2076 (2007)

    Article  CAS  Google Scholar 

  21. Jiang, N. et al. Dasheng: a recently amplified nonautonomous long terminal repeat element that is a major component of pericentromeric regions in rice. Genetics 161, 1293–1305 (2002)

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Monden, Y. et al. High potential of a transposon mPing as a marker system in japonica × japonica cross in rice. DNA Res. 16, 131–140 (2009)

    Article  CAS  Google Scholar 

  23. Higo, K., Ugawa, Y., Iwamoto, M. & Korenaga, T. Plant cis-acting regulatory DNA elements (PLACE) database. Nucleic Acids Res. 27, 297–300 (1999)

    Article  CAS  Google Scholar 

  24. McClintock, B. The relation of homozygous deficiencies to mutations and allelic series in maize. Genetics 29, 478–502 (1944)

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Yang, G., Zhang, F., Hancock, C. N. & Wessler, S. R. Transposition of a rice miniature inverted-repeat transposable element mPing in Arabidopsis thaliana . Proc. Natl Acad. Sci. USA 104, 10962–10967 (2007)

    Article  ADS  CAS  Google Scholar 

  26. Capy, P., Gasperi, G., Biemont, C. & Bazin, C. Stress and transposable elements: co-evolution or useful parasites? Heredity 85, 101–106 (2000)

    Article  CAS  Google Scholar 

  27. Feschotte, C., Zhang, X. & Wessler, S. R. in Mobile DNA II Ch. 50 (eds Craig, N. L., Craigie, R., Gellert, M. & Lambowitz, A. M.) 1147–1158 (ASM Press, 2002)

    Book  Google Scholar 

  28. Delihas, N. Small mobile sequences in bacteria display diverse structure/function motifs. Mol. Microbiol. 67, 475–481 (2007)

    Article  Google Scholar 

  29. Curtis, M. D. & Grossniklaus, U. A gateway cloning vector set for high-throughput functional analysis of genes in planta . Plant Physiol. 133, 462–469 (2003)

    Article  CAS  Google Scholar 

  30. Clough, S. J. & Bent, A. F. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana . Plant J. 16, 735–743 (1998)

    Article  CAS  Google Scholar 

Download references


We thank the Rice Genome Resource Center for the use of the rice microarray system and Y. Nagamura and R. Motoyama for technical support; the GenBank project of the National Institute of Agrobiological Science in Japan for providing seeds of Gimbozu landraces (A123 and A157); and X. Zhang and C. Feschotte for critical discussions and reading of the manuscript. S.R.W. is funded by a NSF Plant Genome grant and the University of Georgia Research Foundation and T.Tanisaka by the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Author Contributions K.N. and F.Z. performed 454 sequencing and analysed the data. A.O.R. provided statistical analyses. T.Tsukiyama and Y.O. performed microarray, and K.N. and H.S. analysed the data. C.N.H. performed Arabidopsis transformation. K.N. performed stress treatment and real-time PCR. K.N., F.Z., T.Tanisaka and S.R.W. contributed the experimental design and wrote the paper.

Author information

Authors and Affiliations


Corresponding authors

Correspondence to Takatoshi Tanisaka or Susan R. Wessler.

Supplementary information

Supplementary Figures

This file contains Supplementary Figures 1-12 with Legends. (PDF 450 kb)

Supplementary Tables

This file contains Supplementary Tables 1-8. (XLS 399 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Naito, K., Zhang, F., Tsukiyama, T. et al. Unexpected consequences of a sudden and massive transposon amplification on rice gene expression. Nature 461, 1130–1134 (2009).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing