Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Rapid ascent of rhyolitic magma at Chaitén volcano, Chile


Rhyolite magma has fuelled some of the Earth’s largest explosive volcanic eruptions1. Our understanding of these events is incomplete, however, owing to the previous lack of directly observed eruptions. Chaitén volcano, in Chile’s northern Patagonia, erupted rhyolite magma unexpectedly and explosively on 1 May 2008 (ref. 2). Chaitén residents felt earthquakes about 24 hours before ash fell in their town and the eruption escalated into a Plinian column. Although such brief seismic forewarning of a major explosive basaltic eruption has been documented3, it is unprecedented for silicic magmas. As precursory volcanic unrest relates to magma migration from the storage region to the surface, the very short pre-eruptive warning at Chaitén probably reflects very rapid magma ascent through the sub-volcanic system. Here we present petrological and experimental data that indicate that the hydrous rhyolite magma at Chaitén ascended very rapidly, with velocities of the order of one metre per second. Such rapid ascent implies a transit time from storage depths greater than five kilometres to the near surface in about four hours. This result has implications for hazard mitigation because the rapidity of ascending rhyolite means that future eruptions may provide little warning.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Backscattered electron micrographs of Chaitén pumice pyroclasts.
Figure 2: H 2 O-saturated phase relations in the Chaitén rhyolite.
Figure 3: Montage of backscattered electron images collected on decompression experiments on the Chaitén pumice.


  1. 1

    Wilson, C. J. N. & Walker, G. P. L. The Taupo eruption, New Zealand. I. General aspects. Phil. Trans. R. Soc. Lond. A 314, 199–228 (1985)

    ADS  Article  Google Scholar 

  2. 2

    Carn, S. et al. The unexpected awakening of Chaitén volcano, Chile. Eos 90, 205–206 (2009)

    ADS  Article  Google Scholar 

  3. 3

    Soosalu, H. & Einarsson, P. Earthquake activity related to the 1991 eruption of the Hekla volcano, Iceland. Bull. Volcanol. 63, 536–544 (2002)

    ADS  Article  Google Scholar 

  4. 4

    Kilburn, C. R. J. & Voight, B. Slow rock fracture as eruption precursor at Soufriere Hills volcano, Montserrat. Geophys. Res. Lett. 25, 3665–3668 (1998)

    ADS  Article  Google Scholar 

  5. 5

    Roman, D. C. & Cashman, K. V. The origin of volcano-tectonic earthquake swarms. Geology 34, 457–460 (2006)

    ADS  Article  Google Scholar 

  6. 6

    Chouet, B. Long-period volcano seismicity: its source and use in eruption forecasting. Nature 380, 309–316 (1996)

    ADS  CAS  Article  Google Scholar 

  7. 7

    Voight, B. R. & Cornelius, R. R. Prospects for eruption prediction in near real-time. Nature 350, 695–698 (1991)

    ADS  Article  Google Scholar 

  8. 8

    Tuffen, H., Smith, R. & Sammonds, P. Evidence for seismogenic fracture of silicic magma. Nature 253, 511–514 (2008)

    ADS  Article  Google Scholar 

  9. 9

    Lavallée, Y. et al. Seismogenic lavas and explosive eruption forecasting. Nature 453, 507–510 (2008)

    ADS  Article  Google Scholar 

  10. 10

    Gardner, J. E., Hilton, M. & Carroll, M. R. Experimental constraints on degassing of magma: isothermal bubble growth during continuous decompression from high pressure. Earth Planet. Sci. Lett. 168, 201–218 (1999)

    ADS  CAS  Article  Google Scholar 

  11. 11

    Llewellin, E. W. & Manga, M. Bubble suspension rheology and implications for conduit flow. J. Volcanol. Geotherm. Res. 143, 205–217 (2005)

    ADS  CAS  Article  Google Scholar 

  12. 12

    Kilburn, C. R. J. & Sammonds, P. R. Maximum warning times for imminent volcanic eruptions. Geophys. Res. Lett. 32, L24313 (2005)

    ADS  Article  Google Scholar 

  13. 13

    Rutherford, M. J. in Minerals Inclusions and Volcanic Processes (eds Putirka, K. D. & Tepley, F. J.) 241–271 (Mineralogical Society of America, 2008)

    Book  Google Scholar 

  14. 14

    Watt, S. et al. Fallout and distribution of volcanic ash over Argentina following the May 2008 explosive eruption of Chaitén, Chile. J. Geophys. Res. 114 B04207 10.1029/2008JB006219 (2009)

    ADS  CAS  Article  Google Scholar 

  15. 15

    Blundy, J., Cashman, K. & Humphreys, M. Magma heating by decompression-driven crystallization beneath andesite volcanoes. Nature 443, 76–80 (2006)

    ADS  CAS  Article  Google Scholar 

  16. 16

    Naranjo, J. A. & Stern, C. R. Holocene tephrochronology of the southernmost part (42°30'-45°S) of the Andean Southern Volcanic Zone. Rev. Geol. Chile 31, 291–306 (2004)

    Google Scholar 

  17. 17

    Hammer, J. E. & Rutherford, M. J. Petrologic indicators of pre-eruption magma dynamics. Geology 31, 79–82 (2003)

    ADS  CAS  Article  Google Scholar 

  18. 18

    Coombs, M. L. & Gardner, J. E. Shallow-storage conditions for the rhyolite of the 1912 eruption at Novarupta, Alaska. Geology 29, 775–778 (2001)

    ADS  CAS  Article  Google Scholar 

  19. 19

    Hammer, J. E., Rutherford, M. J. & Hildreth, W. Magma storage prior to the 1912 eruption at Novarupta, Alaska. Contrib. Mineral. Petrol. 144, 144–162 (2002)

    ADS  CAS  Article  Google Scholar 

  20. 20

    Hammer, J. E. & Rutherford, M. J. An experimental study of the kinetics of decompression-induced crystallization in silicic melt. J. Geophys. Res. 107 10.1029//2001JB000281 (2002)

  21. 21

    Ghiorso, M. S. & Evans, B. W. Thermodynamics of rhombohedral oxide solid solutions and a revision of the Fe-Ti two-oxide geothermometer and oxygen-barometer. Am. J. Sci. 308, 957–1039 (2008)

    ADS  CAS  Article  Google Scholar 

  22. 22

    Castro, J. M. & Gardner, J. E. Did magma ascent rate control the explosive-effusive transition at the Inyo volcanic chain, CA? Geology 36, 279–282 (2008)

    ADS  CAS  Article  Google Scholar 

  23. 23

    Papale, P. Strain-induced magma fragmentation in explosive eruptions. Nature 397, 425–428 (1999)

    ADS  CAS  Article  Google Scholar 

  24. 24

    Dingwell, D. B. Volcanic dilemma: flow or blow? Science 273, 1054–1055 (1996)

    ADS  CAS  Article  Google Scholar 

  25. 25

    Giordano, D., Russell, J. K. & Dingwell, D. B. Viscosity of magmatic liquids: A model. Earth Planet. Sci. Lett. 271, 123–134 (2008)

    ADS  CAS  Article  Google Scholar 

  26. 26

    Gonnermann, H. M. & Manga, M. Explosive volcanism may not be an inevitable consequence of magma fragmentation. Nature 426, 432–435 (2003)

    ADS  CAS  Article  Google Scholar 

  27. 27

    Tuffen, H., Dingwell, D. B. & Pinkerton, H. Repeated fracture and healing of silicic magma generate flow banding and earthquakes? Geology 31, 1089–1092 (2003)

    ADS  Article  Google Scholar 

  28. 28

    Smith, R., Kilburn, C. R. J. & Sammonds, P. R. Rock fracture as a precursor to lava dome eruptions at Mount St. Helens from June 1980 to October 1986. Bull. Volcanol. 69, 681–693 (2007)

    ADS  Article  Google Scholar 

  29. 29

    Scandone, R., Cashman, K. V. & Malone, S. D. Magma supply, magma ascent and the style of volcanic eruptions. Earth Planet. Sci. Lett. 253, 513–529 (2007)

    ADS  CAS  Article  Google Scholar 

  30. 30

    Castro, J. M. et al. Timescales of spherulite crystallization inferred from water concentration profiles. Am. Mineral. 93, 1816–1822 (2008)

    ADS  CAS  Article  Google Scholar 

  31. 31

    Bacon, C. R. & Hirschmann, M. M. Mg/Mn partitioning as a test for equilibrium between coexisting Fe-Ti oxides. Am. Mineral. 73, 57–61 (1988)

    CAS  Google Scholar 

  32. 32

    Silver, L. A., Ihinger, P. D. & Stolper, E. The influence of bulk composition on the speciation of water in silicate glasses. Contrib. Mineral. Petrol. 104, 142–162 (1989)

    ADS  Article  Google Scholar 

Download references


We are grateful for funding from the Alexander von Humboldt Stiftung, the Smithsonian Institution, and ERC grant 202844. N. La Penna provided an eyewitness account of the eruption sequence and critical field assistance. We thank T. Fehr, S. Bernstein and A. Logan for their analytical support. M. Rutherford and H. Tuffen provided comments that greatly improved the manuscript.

Author Contributions J.M.C. collected samples, performed the experiments and analytical work, and co-wrote the paper. D.B.D. analysed data and co-wrote the paper.

Author information



Corresponding author

Correspondence to Jonathan M. Castro.

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1 and 2 with Legends and Legends for Supplementary Tables 1-4. (PDF 1282 kb)

Supplementary Table 1

This table indicates the experimental conditions (T,P, duration), and results of phase equilibrium and decompression experiments conducted on the Chaitén pumice (see file s1). (XLS 41 kb)

Supplementary Table 2

This table provides the compositions of experimentally produced plagioclase and orthopyroxene microlites (see file s1). (XLS 19 kb)

Supplementary Table 3

This table provides the spectral information and water concentrations in Chaitén obsidians and plagioclase-hosted glass inclusions as determined by FTIR (see file s1). (XLS 36 kb)

Supplementary Table 4

This table provides the compositions of coexisting titanomagnetite and ilmenite grains in the Chaitén pumice (see file s1). (XLS 19 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Castro, J., Dingwell, D. Rapid ascent of rhyolitic magma at Chaitén volcano, Chile. Nature 461, 780–783 (2009).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing