Abstract
Single-stranded DNA generated in the cell during DNA metabolism is stabilized and protected by binding of ssDNA-binding (SSB) proteins. Escherichia coli SSB, a representative homotetrameric SSB, binds to ssDNA by wrapping the DNA using its four subunits. However, such a tightly wrapped, high-affinity protein–DNA complex still needs to be removed or repositioned quickly for unhindered action of other proteins. Here we show, using single-molecule two- and three-colour fluorescence resonance energy transfer, that tetrameric SSB can spontaneously migrate along ssDNA. Diffusional migration of SSB helps in the local displacement of SSB by an elongating RecA filament. SSB diffusion also melts short DNA hairpins transiently and stimulates RecA filament elongation on DNA with secondary structure. This observation of diffusional movement of a protein on ssDNA introduces a new model for how an SSB protein can be redistributed, while remaining tightly bound to ssDNA during recombination and repair processes.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Meyer, R. R. & Laine, P. S. The single-stranded DNA-binding protein of Escherichia coli . Microbiol. Rev. 54, 342–380 (1990)
Shereda, R. D., Kozlov, A. G., Lohman, T. M., Cox, M. M. & Keck, J. L. SSB as an organizer/mobilizer of genome maintenance complexes. Crit. Rev. Biochem. Mol. Biol. 43, 289–318 (2008)
Kozlov, A. G. & Lohman, T. M. Kinetic mechanism of direct transfer of Escherichia coli SSB tetramers between single-stranded DNA molecules. Biochemistry 41, 11611–11627 (2002)
Kuznetsov, S. V., Kozlov, A. G., Lohman, T. M. & Ansari, A. Microsecond dynamics of protein–DNA interactions: direct observation of the wrapping/unwrapping kinetics of single-stranded DNA around the E. coli SSB tetramer. J. Mol. Biol. 359, 55–65 (2006)
Roy, R., Kozlov, A. G., Lohman, T. M. & Ha, T. Dynamic structural rearrangements between DNA binding modes of E. coli SSB protein. J. Mol. Biol. 369, 1244–1257 (2007)
Lohman, T. M. & Ferrari, M. E. Escherichia coli single-stranded DNA-binding protein: multiple DNA-binding modes and cooperativities. Annu. Rev. Biochem. 63, 527–570 (1994)
Raghunathan, S., Kozlov, A. G., Lohman, T. M. & Waksman, G. Structure of the DNA binding domain of E. coli SSB bound to ssDNA. Nature Struct. Biol. 7, 648–652 (2000)
Ha, T. et al. Probing the interaction between two single molecules: fluorescence resonance energy transfer between a single donor and a single acceptor. Proc. Natl Acad. Sci. USA 93, 6264–6268 (1996)
Roy, R., Hohng, S. & Ha, T. A practical guide to single-molecule FRET. Nature Methods 5, 507–516 (2008)
Bujalowski, W. & Lohman, T. M. Escherichia coli single-strand binding protein forms multiple, distinct complexes with single-stranded DNA. Biochemistry 25, 7799–7802 (1986)
Lohman, T. M. & Overman, L. B. Two binding modes in Escherichia coli single strand binding protein-single stranded DNA complexes. Modulation by NaCl concentration. J. Biol. Chem. 260, 3594–3603 (1985)
Griffith, J. D., Harris, L. D. & Register, J. Visualization of SSB-ssDNA complexes active in the assembly of stable RecA-DNA filaments. Cold Spring Harb. Symp. Quant. Biol. 49, 553–559 (1984)
McKinney, S. A., Joo, C. & Ha, T. Analysis of single-molecule FRET trajectories using hidden Markov modeling. Biophys. J. 91, 1941–1951 (2006)
Joo, C. et al. Real-time observation of RecA filament dynamics with single monomer resolution. Cell 126, 515–527 (2006)
Hohng, S., Joo, C. & Ha, T. Single-molecule three-color FRET. Biophys. J. 87, 1328–1337 (2004)
Kowalczykowski, S. C. Initiation of genetic recombination and recombination-dependent replication. Trends Biochem. Sci. 25, 156–165 (2000)
Kowalczykowski, S. C., Dixon, D. A., Eggleston, A. K., Lauder, S. D. & Rehrauer, W. M. Biochemistry of homologous recombination in Escherichia coli . Microbiol. Rev. 58, 401–465 (1994)
Roca, A. I. & Cox, M. M. RecA protein: structure, function, and role in recombinational DNA repair. Prog. Nucleic Acid Res. Mol. Biol. 56, 129–223 (1997)
Kuzminov, A. Recombinational repair of DNA damage in Escherichia coli and bacteriophage λ. Microbiol. Mol. Biol. Rev. 63, 751–813 (1999)
Ennis, D. G., Amundsen, S. K. & Smith, G. R. Genetic functions promoting homologous recombination in Escherichia coli: a study of inversions in phage λ. Genetics 115, 11–24 (1987)
Glassberg, J., Meyer, R. R. & Kornberg, A. Mutant single-strand binding protein of Escherichia coli: genetic and physiological characterization. J. Bacteriol. 140, 14–19 (1979)
Golub, E. I. & Low, K. B. Indirect stimulation of genetic recombination. Proc. Natl Acad. Sci. USA 80, 1401–1405 (1983)
Umezu, K., Chi, N. W. & Kolodner, R. D. Biochemical interaction of the Escherichia coli RecF, RecO, and RecR proteins with RecA protein and single-stranded DNA binding protein. Proc. Natl Acad. Sci. USA 90, 3875–3879 (1993)
Anderson, D. G. & Kowalczykowski, S. C. The translocating RecBCD enzyme stimulates recombination by directing RecA protein onto ssDNA in a χ-regulated manner. Cell 90, 77–86 (1997)
Bork, J. M., Cox, M. M. & Inman, R. B. The RecOR proteins modulate RecA protein function at 5′ ends of single-stranded DNA. EMBO J. 20, 7313–7322 (2001)
Morimatsu, K. & Kowalczykowski, S. C. RecFOR proteins load RecA protein onto gapped DNA to accelerate DNA strand exchange: a universal step of recombinational repair. Mol. Cell 11, 1337–1347 (2003)
Hobbs, M. D., Sakai, A. & Cox, M. M. SSB protein limits RecOR binding onto single-stranded DNA. J. Biol. Chem. 282, 11058–11067 (2007)
Chen, Z., Yang, H. & Pavletich, N. P. Mechanism of homologous recombination from the RecA–ssDNA/dsDNA structures. Nature 453, 489–494 (2008)
Kowalczykowski, S. C., Clow, J., Somani, R. & Varghese, A. Effects of the Escherichia coli SSB protein on the binding of Escherichia coli RecA protein to single-stranded DNA. Demonstration of competitive binding and the lack of a specific protein–protein interaction. J. Mol. Biol. 193, 81–95 (1987)
Kowalczykowski, S. C. & Krupp, R. A. Effects of Escherichia coli SSB protein on the single-stranded DNA-dependent ATPase activity of Escherichia coli RecA protein. Evidence that SSB protein facilitates the binding of RecA protein to regions of secondary structure within single-stranded DNA. J. Mol. Biol. 193, 97–113 (1987)
Muniyappa, K., Shaner, S. L., Tsang, S. S. & Radding, C. M. Mechanism of the concerted action of recA protein and helix-destabilizing proteins in homologous recombination. Proc. Natl Acad. Sci. USA 81, 2757–2761 (1984)
Eggington, J. M., Kozlov, A. G., Cox, M. M. & Lohman, T. M. Polar destabilization of DNA duplexes with single-stranded overhangs by the Deinococcus radiodurans SSB protein. Biochemistry 45, 14490–14502 (2006)
Bujalowski, W. & Lohman, T. M. Limited co-operativity in protein-nucleic acid interactions. A thermodynamic model for the interactions of Escherichia coli single strand binding protein with single-stranded nucleic acids in the “beaded”, (SSB)65 mode. J. Mol. Biol. 195, 897–907 (1987)
Römer, R., Schomburg, U., Krauss, G. & Maass, G. Escherichia coli single-stranded DNA binding protein is mobile on DNA: proton NMR study of its interaction with oligo- and polynucleotides. Biochemistry 23, 6132–6137 (1984)
Clendenning, J. B. & Schurr, J. M. A model for the binding of E. coli single-strand binding protein to supercoiled DNA. Biophys. Chem. 52, 227–249 (1994)
Glikin, G. C., Gargiulo, G., Rena-Descalzi, L. & Worcel, A. Escherichia coli single-strand binding protein stabilizes specific denatured sites in superhelical DNA. Nature 303, 770–774 (1983)
Sun, W. & Godson, G. N. Structure of the Escherichia coli primase/single-strand DNA-binding protein/phage G4oric complex required for primer RNA synthesis. J. Mol. Biol. 276, 689–703 (1998)
Shereda, R. D., Bernstein, D. A. & Keck, J. L. A central role for SSB in Escherichia coli RecQ DNA helicase function. J. Biol. Chem. 282, 19247–19258 (2007)
Lecointe, F. et al. Anticipating chromosomal replication fork arrest: SSB targets repair DNA helicases to active forks. EMBO J. 26, 4239–4251 (2007)
Richard, D. J. et al. Single-stranded DNA-binding protein hSSB1 is critical for genomic stability. Nature 453, 677–681 (2008)
Rasnik, I., McKinney, S. A. & Ha, T. Nonblinking and long-lasting single-molecule fluorescence imaging. Nature Methods 3, 891–893 (2006)
Acknowledgements
We thank C. Joo, S. A. McKinney, I. Rasnik, S. Hohng and S. Myong for experimental help and discussion; C. Murphy, M. Nahas and K. Raghunathan for discussion; T. Ho and A. Niedziela-Majka for help with DNA and protein preparation, respectively; and R. Porter for the SSB expression plasmid. T.H. is an employee of the Howard Hughes Medical Institute. These studies were supported by grants from the National Institutes of Health and the National Science Foundation.
Author Contributions R.R., A.G.K., T.M.L. and T.H. designed the experiments, A.G.K. prepared the wild-type SSB protein and the mutant SSB with fluorescent labels, R.R. performed the experiments and analysed the data; R.R., T.M.L. and T.H. wrote the manuscript.
Author information
Authors and Affiliations
Corresponding author
Supplementary information
Supplementary Information
This file contains Supplementary Material, Supplementary Methods including Table 1, Supplementary Figures 1-12 with legends, and Supplementary References. (PDF 2962 kb)
Supplementary Movie
SSB diffusion movie in three segments. In the first, SSB diffusion via the rolling mechanism is illustrated. In the second, RecA filament growth via monomer addition biases SSB diffusion in a directional manner. In the third, SSB can melt secondary structures transiently via diffusion and promotes RecA filament formation. (MOV 3985 kb)
Rights and permissions
About this article
Cite this article
Roy, R., Kozlov, A., Lohman, T. et al. SSB protein diffusion on single-stranded DNA stimulates RecA filament formation. Nature 461, 1092–1097 (2009). https://doi.org/10.1038/nature08442
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nature08442
This article is cited by
-
An automated single-molecule FRET platform for high-content, multiwell plate screening of biomolecular conformations and dynamics
Nature Communications (2023)
-
Towards a better understanding of antimicrobial resistance dissemination: what can be learnt from studying model conjugative plasmids?
Military Medical Research (2022)
-
ABEL-FRET: tether-free single-molecule FRET with hydrodynamic profiling
Nature Methods (2021)
-
On the stability of protein–DNA complexes in molecular dynamics simulations using the CUFIX corrections
Journal of the Korean Physical Society (2021)
-
MutL sliding clamps coordinate exonuclease-independent Escherichia coli mismatch repair
Nature Communications (2019)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.