Cooper pair splitter realized in a two-quantum-dot Y-junction

Abstract

Non-locality is a fundamental property of quantum mechanics that manifests itself as correlations between spatially separated parts of a quantum system. A fundamental route for the exploration of such phenomena is the generation of Einstein–Podolsky–Rosen (EPR) pairs1 of quantum-entangled objects for the test of so-called Bell inequalities2. Whereas such experimental tests of non-locality have been successfully conducted with pairwise entangled photons, it has not yet been possible to realize an electronic analogue of it in the solid state, where spin-1/2 mobile electrons are the natural quantum objects3. The difficulty stems from the fact that electrons are immersed in a macroscopic ground state—the Fermi sea—which prevents the straightforward generation and splitting of entangled pairs of electrons on demand. A superconductor, however, could act as a source of EPR pairs of electrons, because its ground-state is composed of Cooper pairs in a spin-singlet state4. These Cooper pairs can be extracted from a superconductor by tunnelling, but, to obtain an efficient EPR source of entangled electrons, the splitting of the Cooper pairs into separate electrons has to be enforced. This can be achieved by having the electrons ‘repel’ each other by Coulomb interaction5. Controlled Cooper pair splitting can thereby be realized by coupling of the superconductor to two normal metal drain contacts by means of individually tunable quantum dots. Here we demonstrate the first experimental realization of such a tunable Cooper pair splitter, which shows a surprisingly high efficiency. Our findings open a route towards a first test of the EPR paradox and Bell inequalities in the solid state.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Cooper pair splitter.
Figure 2: Device and measurement principle.
Figure 3: Non-local signal of Cooper pair splitting.
Figure 4: Level position and temperature dependence.

References

  1. 1

    Einstein, A., Podolsky, B. & Rosen, N. Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777–780 (1935)

    ADS  CAS  Article  Google Scholar 

  2. 2

    Aspect, A., Grangier, P. & Roger, G. Experimental realization of Einstein-Podolsky-Rosen-Bohm gedankenexperiment—a new violation of Bell inequalities. Phys. Rev. Lett. 49, 91–94 (1982)

    ADS  Article  Google Scholar 

  3. 3

    Loss, D. & DiVincenzo, D. P. Quantum computation with quantum dots. Phys. Rev. A 57, 120–126 (1998)

    ADS  CAS  Article  Google Scholar 

  4. 4

    Bardeen, J., Cooper, L. N. & Schrieffer, J. R. Theory of superconductivity. Phys. Rev. 108, 1175–1204 (1957)

    ADS  MathSciNet  CAS  Article  Google Scholar 

  5. 5

    Recher, P., Sukhorukov, E. V. & Loss, D. Andreev tunneling, Coulomb blockade, and resonant transport of non-local spin-entangled electrons. Phys. Rev. B 63, 165314 (2001)

    ADS  Article  Google Scholar 

  6. 6

    Loss, D. & Sukhorukov, E. V. Probing entanglement and nonlocality of electrons in a doubledot via transport and noise. Phys. Rev. Lett. 84, 1035–1038 (2000)

    ADS  CAS  Article  Google Scholar 

  7. 7

    Crepieux, A., Guyon, R., Devillard, P. & Martin, T. Electron injection in a nanotube: noise correlations and entanglement. Phys. Rev. B 67, 205408 (2003)

    ADS  Article  Google Scholar 

  8. 8

    Lesovik, G. B., Martin, T. & Blatter, G. Electronic entanglement in the vicinity of a superconductor. Eur. Phys. J. B 24, 287–290 (2001)

    ADS  CAS  Article  Google Scholar 

  9. 9

    Samuelsson, P., Sukhorukov, E. V. & Büttiker, M. Orbital entanglement and violation of Bell inequalities in mesoscopic conductors. Phys. Rev. Lett. 91, 157002 (2003)

    ADS  CAS  Article  Google Scholar 

  10. 10

    Bouchiat, V. et al. Single-walled carbon nanotube-superconductor entangler: noise correlations and Einstein–Podolsky–Rosen states. Nanotechnology 14, 77–85 (2003)

    ADS  CAS  Article  Google Scholar 

  11. 11

    Choi, M.-S., Bruder, C. & Loss, D. Spin-dependent Josephson current through double quantum dots and measurement of entangled electron states. Phys. Rev. B 62, 13569–13572 (2000)

    ADS  CAS  Article  Google Scholar 

  12. 12

    Recher, P. & Loss, D. Superconductor coupled to two Luttinger liquids as an entangler for electron spins. Phys. Rev. B 65, 165327 (2002)

    ADS  Article  Google Scholar 

  13. 13

    Bena, C., Vishveshwara, S., Balents, L. & Fisher, M. P. A. Quantum entanglement in carbon nanotubes. Phys. Rev. Lett. 89, 037901 (2002)

    ADS  Article  Google Scholar 

  14. 14

    Sauret, O., Feinberg, D. & Martin, T. Quantum master equations for the superconductor-quantum dot entangler. Phys. Rev. B 70, 245313 (2004)

    ADS  Article  Google Scholar 

  15. 15

    Torres, J. & Martin, T. Positive and negative Hanbury-Brown and Twiss correlations in normal metal-superconducting devices. Eur. Phys. J. B 12, 319–322 (1999)

    ADS  CAS  Article  Google Scholar 

  16. 16

    Falci, G., Feinberg, D. & Hekking, F. W. J. Correlated tunneling into a superconductor in a multiprobe hybrid structure. Europhys. Lett. 54, 255–261 (2001)

    ADS  CAS  Article  Google Scholar 

  17. 17

    Samuelsson, P. & Büttiker, M. Chaotic dot-superconductor analog of the Hanbury Brown–Twiss effect. Phys. Rev. Lett. 89, 046601 (2002)

    ADS  CAS  Article  Google Scholar 

  18. 18

    Deutscher, G. Crossed Andreev reflections. J. Supercond. 15, 43–47 (2002)

    ADS  CAS  Article  Google Scholar 

  19. 19

    Morten, J. P., Brataas, A. & Belzig, W. Circuit theory of crossed Andreev reflection. Phys. Rev. B 74, 214510 (2006)

    ADS  Article  Google Scholar 

  20. 20

    Golubev, D. S. & Zaikin, A. D. Non-local Andreev reflection in superconducting quantum dots. Phys. Rev. B 76, 184510 (2007)

    ADS  Article  Google Scholar 

  21. 21

    Beckmann, D., Weber, H. B. & v Löhneysen, H. Evidence for crossed Andreev reflection in superconductor-ferromagnet hybrid structures. Phys. Rev. Lett. 93, 197003 (2004)

    ADS  CAS  Article  Google Scholar 

  22. 22

    Russo, S., Kruog, M., Klapwijk, T. M. & Morpurgo, A. F. Experimental observation of bias-dependent nonlocal Andreev reflection. Phys. Rev. Lett. 95, 027002 (2005)

    ADS  CAS  Article  Google Scholar 

  23. 23

    Bjork, M. T. et al. Few-electron quantum dots in nanowires. Nano Lett. 4, 1621–1625 (2004)

    ADS  Article  Google Scholar 

  24. 24

    Fasth, C., Fuhrer, A., Bjork, M. T. & Samuelson, L. Tunable double quantum dots in InAs nanowires defined by local gate electrodes. Nano Lett. 5, 1487–1490 (2005)

    ADS  CAS  Article  Google Scholar 

  25. 25

    Csonka, S. et al. Giant fluctuations and gate control of the g-factor in InAs nanowire quantum dots. Nano Lett. 8, 3932–3935 (2008)

    ADS  CAS  Article  Google Scholar 

  26. 26

    Feinberg, D. Andreev scattering and cotunneling between two superconductor-normal metal interfaces: the dirty limit. Eur. Phys. J. B 36, 419–422 (2003)

    ADS  CAS  Article  Google Scholar 

  27. 27

    Kurtsiefer, C., Oberparleiter, M. & Weinfurter, H. High-efficiency entangled photon pair collection in type-II parametric fluorescence. Phys. Rev. A 64, 023802 (2001)

    ADS  Article  Google Scholar 

  28. 28

    Burkard, G., Loss, D. & Sukhorukov, E. V. Noise of entangled electrons: bunching and antibunching. Phys. Rev. B 61, R163003 (2000)

    Article  Google Scholar 

  29. 29

    Chtchelkatchev, N. M., Blatter, G., Lesovik, G. B. & Martin, T. Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002)

    ADS  Article  Google Scholar 

  30. 30

    Samuelsson, P., Sukhorukov, E. V. & Büttiker, M. Electric current noise of a beamsplitter as a test of spin entanglement. Phys. Rev. B 70, 115330 (2004)

    ADS  Article  Google Scholar 

  31. 31

    Herrmann, L. G. et al. Carbon nanotubes as Cooper pair beam splitters. Preprint at 〈http://arxiv.org/abs/0909.3243v1〉 (2009)

Download references

Acknowledgements

We thank G. Zaránd, P. Moca and C. W. J. Beenakker for discussions, and C. B. Srensen and M. Aagesen for Molecular Beam Epitaxy growth. This work was supported by the Swiss National Science Foundation, the Swiss National Center of Competence in Research on Nanoscale Science, the Danish Natural Science Research Council, Hungarian Scientific Research Fund (OTKA) project NNF 78842 and Marie Curie project 41139 of the European Union. S.C. is a grantee of the Bolyai János Scholarship.

Author Contributions L.H. and S.C. fabricated the samples and performed the measurements. The idea was born of discussions between C.S., S.C. and L.H. InAs nanowires were grown in the laboratory of J.N. All authors were involved in interpretation, discussion and paper writing.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to S. Csonka or C. Schönenberger.

Supplementary information

Supplementary Information

This file contains Supplementary Methods, Supplementary Figures S1-S3 and Supplementary References. (PDF 467 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hofstetter, L., Csonka, S., Nygård, J. et al. Cooper pair splitter realized in a two-quantum-dot Y-junction. Nature 461, 960–963 (2009). https://doi.org/10.1038/nature08432

Download citation

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing