Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Role of the polycomb protein EED in the propagation of repressive histone marks

Abstract

Polycomb group proteins have an essential role in the epigenetic maintenance of repressive chromatin states. The gene-silencing activity of the Polycomb repressive complex 2 (PRC2) depends on its ability to trimethylate lysine 27 of histone H3 (H3K27) by the catalytic SET domain of the EZH2 subunit, and at least two other subunits of the complex: SUZ12 and EED. Here we show that the carboxy-terminal domain of EED specifically binds to histone tails carrying trimethyl-lysine residues associated with repressive chromatin marks, and that this leads to the allosteric activation of the methyltransferase activity of PRC2. Mutations in EED that prevent it from recognizing repressive trimethyl-lysine marks abolish the activation of PRC2 in vitro and, in Drosophila, reduce global methylation and disrupt development. These findings suggest a model for the propagation of the H3K27me3 mark that accounts for the maintenance of repressive chromatin domains and for the transmission of a histone modification from mother to daughter cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Trimethyl-lysine binding to an aromatic cage on EED.
Figure 2: Interactions between EED and trimethylated histone peptides.
Figure 3: EED and PRC2 interaction with chromatin.
Figure 4: Peptide mimicking repressive marks stimulates PRC2 activity.
Figure 5: The aromatic cage in Drosophila ESC is important for its in vivo function.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Data deposits

The structural data have been deposited with the Protein Data Bank under accession numbers 3IJC (EED/NDSB), 3IIW (EED/H3K27), 3IIY (EED/H1K26), 3IJ0 (EED/H3K9) and 3IJ1 (EED/H4K20).

References

  1. Schuettengruber, B., Chourrout, D., Vervoort, M., Leblanc, B. & Cavalli, G. Genome regulation by polycomb and trithorax proteins. Cell 128, 735–745 (2007)

    Article  CAS  Google Scholar 

  2. Czermin, B. et al. Drosophila enhancer of Zeste/ESC complexes have a histone H3 methyltransferase activity that marks chromosomal Polycomb sites. Cell 111, 185–196 (2002)

    Article  CAS  Google Scholar 

  3. Cao, R. et al. Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science 298, 1039–1043 (2002)

    Article  ADS  CAS  Google Scholar 

  4. Kuzmichev, A., Nishioka, K., Erdjument-Bromage, H., Tempst, P. & Reinberg, D. Histone methyltransferase activity associated with a human multiprotein complex containing the Enhancer of Zeste protein. Genes Dev. 16, 2893–2905 (2002)

    Article  CAS  Google Scholar 

  5. Müller, J. et al. Histone methyltransferase activity of a Drosophila Polycomb group repressor complex. Cell 111, 197–208 (2002)

    Article  Google Scholar 

  6. Nekrasov, M. et al. Pcl-PRC2 is needed to generate high levels of H3–K27 trimethylation at Polycomb target genes. EMBO J. 26, 4078–4088 (2007)

    Article  CAS  Google Scholar 

  7. Sarma, K., Margueron, R., Ivanov, A., Pirrotta, V. & Reinberg, D. Ezh2 requires PHF1 to efficiently catalyze H3 lysine 27 trimethylation in vivo . Mol. Cell. Biol. 28, 2718–2731 (2008)

    Article  CAS  Google Scholar 

  8. Han, Z. et al. Structural basis of EZH2 recognition by EED. Structure 15, 1306–1315 (2007)

    Article  CAS  Google Scholar 

  9. Schiefner, A. et al. Cation-pi interactions as determinants for binding of the compatible solutes glycine betaine and proline betaine by the periplasmic ligand-binding protein ProX from Escherichia coli . J. Biol. Chem. 279, 5588–5596 (2004)

    Article  CAS  Google Scholar 

  10. Kouzarides, T. Chromatin modifications and their function. Cell 128, 693–705 (2007)

    Article  CAS  Google Scholar 

  11. Nekrasov, M., Wild, B. & Muller, J. Nucleosome binding and histone methyltransferase activity of Drosophila PRC2. EMBO Rep. 6, 348–353 (2005)

    Article  CAS  Google Scholar 

  12. Simon, M. D. et al. The site-specific installation of methyl-lysine analogs into recombinant histones. Cell 128, 1003–1012 (2007)

    Article  CAS  Google Scholar 

  13. Tie, F., Stratton, C. A., Kurzhals, R. L. & Harte, P. J. The N terminus of Drosophila ESC binds directly to histone H3 and is required for E(Z)-dependent trimethylation of H3 lysine 27. Mol. Cell. Biol. 27, 2014–2026 (2007)

    Article  CAS  Google Scholar 

  14. Struhl, G. & Brower, D. Early role of the esc+ gene product in the determination of segments in Drosophila . Cell 31, 285–292 (1982)

    Article  CAS  Google Scholar 

  15. Ohno, K., McCabe, D., Czermin, B., Imhof, A. & Pirrotta, V. ESC, ESCL and their roles in Polycomb Group mechanisms. Mech. Dev. 125, 527–541 (2008)

    Article  CAS  Google Scholar 

  16. Kurzhals, R. L., Tie, F., Stratton, C. A. & Harte, P. J. Drosophila ESC-like can substitute for ESC and becomes required for Polycomb silencing if ESC is absent. Dev. Biol. 313, 293–306 (2008)

    Article  CAS  Google Scholar 

  17. Hansen, K. H. et al. A model for transmission of the H3K27me3 epigenetic mark. Nature Cell Biol. 10, 1291–1300 (2008)

    Article  CAS  Google Scholar 

  18. Huang, Y., Fang, J., Bedford, M. T., Zhang, Y. & Xu, R.-M. Recognition of histone H3 lysine-4 methylation by the double tudor domain of JMJD2A. Science 312, 748–751 (2006)

    Article  ADS  CAS  Google Scholar 

  19. Li, H. et al. Molecular basis for site-specific read-out of histone H3K4me3 by the BPTF PHD finger of NURF. Nature 442, 91–95 (2006)

    Article  ADS  CAS  Google Scholar 

  20. Peña, P. V. et al. Molecular mechanism of histone H3K4me3 recognition by plant homeodomain of ING2. Nature 442, 100–103 (2006)

    Article  ADS  Google Scholar 

  21. Southall, S. M., Wong, P. S., Odho, Z., Roe, S. M. & Wilson, J. R. Structural basis for the requirement of additional factors for MLL1 SET domain activity and recognition of epigenetic marks. Mol. Cell 33, 181–191 (2009)

    Article  CAS  Google Scholar 

  22. Verreault, A., Kaufman, P. D., Kobayashi, R. & Stillman, B. Nucleosome assembly by a complex of CAF-1 and acetylated histones H3/H4. Cell 87, 95–104 (1996)

    Article  CAS  Google Scholar 

  23. Murzina, N. V. et al. Structural basis for the recognition of histone H4 by the histone-chaperone RbAp46. Structure 16, 1077–1085 (2008)

    Article  CAS  Google Scholar 

  24. Schwartz, Y. B. & Pirrotta, V. Polycomb complexes and epigenetic states. Curr. Opin. Cell Biol. 20, 266–273 (2008)

    Article  CAS  Google Scholar 

  25. Ringrose, L. & Paro, R. Polycomb/Trithorax response elements and epigenetic memory of cell identity. Development 134, 223–232 (2007)

    Article  CAS  Google Scholar 

  26. Papp, B. & Muller, J. Histone trimethylation and the maintenance of transcriptional ON and OFF states by trxG and PcG proteins. Genes Dev. 20, 2041–2054 (2006)

    Article  CAS  Google Scholar 

  27. Schwartz, Y. B. et al. Genome-wide analysis of Polycomb targets in Drosophila melanogaster . Nature Genet. 38, 700–705 (2006)

    Article  CAS  Google Scholar 

  28. Otwinowski, Z. & Minor, W. Processing of x-ray diffraction data collected in oscillation mode. Methods Enzymol. 267, 307–326 (1997)

    Article  Google Scholar 

  29. Terwilliger, T. C. & Berendzen, J. Automated MAD and MIR structure solution. Acta Crystallogr. D 55, 849–861 (1999)

    Article  CAS  Google Scholar 

  30. Terwilliger, T. C. Maximum-likelihood density modification. Acta Crystallogr. D 56, 965–972 (2000)

    Article  CAS  Google Scholar 

  31. Perrakis, A., Sixma, T. K., Wilson, K. S. & Lamzin, V. S. wARP: improvement and extension of crystallographic phases by weighted averaging of multiple-refined dummy atomic models. Acta Crystallogr. D 53, 448–455 (1997)

    Article  CAS  Google Scholar 

  32. Navaza, J. AMoRe: an automated package for molecular replacement. Acta Crystallogr. A 50, 157–163 (1994)

    Article  Google Scholar 

  33. Collaborative Computational Project. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994)

  34. Brünger, A. T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998)

    Article  Google Scholar 

  35. Jones, T. A., Zou, J. Y., Cowan, S. W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991)

    Article  Google Scholar 

  36. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D 60, 2126–2132 (2004)

    Article  Google Scholar 

  37. Luger, K., Rechsteiner, T. J., Flaus, A. J., Waye, M. M. & Richmond, T. J. Characterization of nucleosome core particles containing histone proteins made in bacteria. J. Mol. Biol. 272, 301–311 (1997)

    Article  CAS  Google Scholar 

  38. Margueron, R. et al. Ezh1 and Ezh2 maintain repressive chromatin through different mechanisms. Mol. Cell 32, 503–518 (2008)

    Article  CAS  Google Scholar 

  39. Bischof, J., Maeda, R. K., Hediger, M., Karch, F. & Basler, K. An optimized transgenesis system for Drosophila using germ-line-specific phiC31 integrases. Proc. Natl Acad. Sci. USA 104, 3312–3317 (2007)

    Article  ADS  CAS  Google Scholar 

  40. Bateman, J. R., Lee, A. M. & Wu, C. T. Site-specific transformation of Drosophila via phiC31 integrase-mediated cassette exchange. Genetics 173, 769–777 (2006)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. McCabe for technical assistance, K. Basler for fly stocks and the pUASTattB plasmid, T. Jenuwein for antibodies and J. Muller for Drosophila PRC2 baculovirus. We thank J. Millar and A. Gould for suggestions and discussions, D. Allis for insightful discussions on histone specificity, P. Walker for technical assistance, and J. Brock for assistance with figures. This work was supported by the following grants: Fellowship from the Deutsche Akademie der Naturforscher Leopoldina (LPDS 2009-5) to P.V., NIH grants GM064844 and GM37120 and HHMI to D.R. Work in the S.J.G. laboratory is funded by the MRC. Work in the V.P. laboratory was supported by the Division of Life Sciences of Rutgers University.

Author Contributions R.M., N.J., K.O., M.L.S., J.S., W.J.D., P.V., S.R.M. and V.D.M. performed experiments. All authors contributed to data analysis, experimental design and manuscript writing.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Vincenzo Pirrotta, Danny Reinberg or Steven J. Gamblin.

Supplementary information

Supplementary Information

This file contains Supplementary Figures S1-S10 with Legends and Notes, Supplementary Tables S1-S2 and Supplementary References. (PDF 1507 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Margueron, R., Justin, N., Ohno, K. et al. Role of the polycomb protein EED in the propagation of repressive histone marks. Nature 461, 762–767 (2009). https://doi.org/10.1038/nature08398

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature08398

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing