Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Stable isotope constraints on Holocene carbon cycle changes from an Antarctic ice core

Abstract

Reconstructions of atmospheric CO2 concentrations based on Antarctic ice cores1,2 reveal significant changes during the Holocene epoch, but the processes responsible for these changes in CO2 concentrations have not been unambiguously identified. Distinct characteristics in the carbon isotope signatures of the major carbon reservoirs (ocean, biosphere, sediments and atmosphere) constrain variations in the CO2 fluxes between those reservoirs. Here we present a highly resolved atmospheric δ13C record for the past 11,000 years from measurements on atmospheric CO2 trapped in an Antarctic ice core. From mass-balance inverse model calculations3,4 performed with a simplified carbon cycle model, we show that the decrease in atmospheric CO2 of about 5 parts per million by volume (p.p.m.v.). The increase in δ13C of about 0.25‰ during the early Holocene is most probably the result of a combination of carbon uptake of about 290 gigatonnes of carbon by the land biosphere and carbon release from the ocean in response to carbonate compensation of the terrestrial uptake during the termination of the last ice age. The 20 p.p.m.v. increase of atmospheric CO2 and the small decrease in δ13C of about 0.05‰ during the later Holocene can mostly be explained by contributions from carbonate compensation of earlier land-biosphere uptake and coral reef formation, with only a minor contribution from a small decrease of the land-biosphere carbon inventory.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: δ 13 C and CO 2 1, 2 measured in air trapped in ice from Dome C, Antarctica.
Figure 2: δ13C ice-core records measured on the Antarctic ice cores from Dome C, Taylor Dome7 and Law Dome22.
Figure 3: Attribution of simulated CO 2 to different processes.

References

  1. Monnin, E. et al. Atmospheric CO2 concentrations over the last glacial termination. Science 291, 112–114 (2001)

    ADS  CAS  Article  Google Scholar 

  2. Flückiger, J. et al. High-resolution Holocene N2O ice core record and its relationship with CH4 and CO2 . Glob. Biogeochem. Cycles 16 1010 10.1029/2001GB001417 (2002)

    ADS  Article  Google Scholar 

  3. Joos, F. & Bruno, M. Long-term variability of the terrestrial and oceanic carbon sinks and the budgets of the carbon isotopes 13C and 14C. Glob. Biogeochem. Cycles 12, 277–295 (1998)

    ADS  CAS  Article  Google Scholar 

  4. Bruno, M. & Joos, F. Terrestrial carbon storage during the past 200 years: a Monte Carlo analysis of CO2 data from ice core and atmospheric measurements. Glob. Biogeochem. Cycles 11, 111–124 (1997)

    ADS  CAS  Article  Google Scholar 

  5. Lüthi, D. et al. High-resolution carbon dioxide concentration record 650,000–800,000 years before present. Nature 453, 379–382 (2008)

    ADS  Article  Google Scholar 

  6. Sigman, D. M. & Boyle, E. A. Glacial/interglacial variations in atmospheric carbon dioxide. Nature 407, 859–869 (2000)

    ADS  CAS  Article  Google Scholar 

  7. Indermühle, A. et al. Holocene carbon-cycle dynamics based on CO2 trapped in ice at Taylor Dome, Antarctica. Nature 398, 121–126 (1999)

    ADS  Article  Google Scholar 

  8. Joos, F., Gerber, S., Prentice, I. C., Otto-Bliesner, B. L. & Valdes, P. J. Transient simulations of Holocene atmospheric carbon dioxide and terrestrial carbon since the Last Glacial Maximum. Glob. Biogeochem. Cycles 18 GB2002 10.1029/2003GB002156 (2004)

    ADS  CAS  Article  Google Scholar 

  9. MacDonald, G. M. et al. Rapid early development of circumarctic peatlands and atmospheric CH4 and CO2 variations. Science 314, 285–288 (2006)

    ADS  CAS  Article  Google Scholar 

  10. Ruddiman, W. F. The anthropogenic greenhouse era began thousands of years ago. Clim. Change 61, 261–293 (2003)

    CAS  Article  Google Scholar 

  11. Strassmann, K. M., Joos, F. & Fischer, G. Simulating effects of land use changes on carbon fluxes: past contributions to atmospheric CO2 increases and future commitments due to losses of terrestrial sink capacity. Tellus B 60, 583–603 (2008)

    ADS  Article  Google Scholar 

  12. Brovkin, V., Kim, J. H., Hofmann, M. & Schneider, R. A lowering effect of reconstructed Holocene changes in sea surface temperatures on the atmospheric CO2 concentration. Glob. Biogeochem. Cycles 22 GB1016 10.1029/2006GB002885 (2008)

    ADS  CAS  Article  Google Scholar 

  13. Berger, W. H. Increase of carbon dioxide in the atmosphere during deglaciation—the coral-reef hypothesis. Naturwissenschaften 69, 87–88 (1982)

    ADS  CAS  Article  Google Scholar 

  14. Ridgwell, A. J., Watson, A. J., Maslin, M. A. & Kaplan, J. O. Implications of coral reef buildup for the controls on atmospheric CO2 since the Last Glacial Maximum. Paleoceanography 18, 1083–1092 (2003)

    ADS  Article  Google Scholar 

  15. Broecker, W. S., Lynch-Stieglitz, J., Clark, E., Hajdas, I. & Bonani, G. What caused the atmosphere's CO2 content to rise during the last 8000 years? Geochem. Geophys. Geosyst. 2 1062 10.1029/2001GC000177 (2001)

    ADS  Article  Google Scholar 

  16. Brovkin, V. et al. Carbon cycle, vegetation, and climate dynamics in the Holocene: experiments with the CLIMBER-2 model. Glob. Biogeochem. Cycles 16 10.1029/2001GB001662 (2002)

    Article  Google Scholar 

  17. Smith, H. J., Fischer, H., Wahlen, M., Mastroianni, D. & Deck, B. Dual modes of the carbon cycle since the Last Glacial Maximum. Nature 400, 248–250 (1999)

    ADS  CAS  Article  Google Scholar 

  18. Leuenberger, M., Siegenthaler, U. & Langway, C. C. Carbon isotope composition of atmospheric CO2 during the last ice-age from an Antarctic ice core. Nature 357, 488–490 (1992)

    ADS  CAS  Article  Google Scholar 

  19. Eyer, M. Highly Resolved δ13C Measurements on CO2 in Air from Antarctic Ice Cores. 1–113, PhD thesis, Univ. Bern (2004)

    Google Scholar 

  20. Lourantou, A. Contraindre l'Augmentation en Dioxyde de Carbone (CO2) lors des Déglaciations Basés sur son Rapport Isotopique Stable du Carbone (δ13CO2). PhD thesis, Univ. Joseph Fourier (2008)

    Google Scholar 

  21. Loulergue, L. et al. New constraints on the gas age-ice age difference along the EPICA ice cores, 0–50 kyr. Clim. Past 3, 527–540 (2007)

    Article  Google Scholar 

  22. Francey, R. J. et al. A 1000-year high precision record of δ13C in atmospheric CO2 . Tellus B 51, 170–193 (1999)

    ADS  Article  Google Scholar 

  23. Schurgers, G. et al. Dynamics of the terrestrial biosphere, climate and atmospheric CO2 concentration during interglacials: a comparison between Eemian and Holocene. Clim. Past 2, 205–220 (2006)

    Article  Google Scholar 

  24. Vecsei, A. & Berger, W. H. Increase of atmospheric CO2 during deglaciation: constraints on the coral reef hypothesis from patterns of deposition. Glob. Biogeochem. Cycles 18 GB1035 10.1029/2003GB002147 (2004)

    ADS  CAS  Article  Google Scholar 

  25. Smith, L. C. et al. Siberian peatlands a net carbon sink and global methane source since the early Holocene. Science 303, 353–356 (2004)

    ADS  CAS  Article  Google Scholar 

  26. Kim, J. H. et al. North Pacific and North Atlantic sea-surface temperature variability during the holocene. Quat. Sci. Rev. 23, 2141–2154 (2004)

    ADS  Article  Google Scholar 

  27. Wang, Y., Mysak, L. A. & Roulet, N. T. Holocene climate and carbon cycle dynamics: experiments with the ''green'' McGill Paleoclimate Model. Glob. Biogeochem. Cycles 19 GB3022 10.1029/2005GB002484 (2005)

    ADS  CAS  Article  Google Scholar 

  28. Beilman, D. W., MacDonald, G. M., Smith, L. C. & Reimer, P. J. Carbon accumulation in peatlands of West Siberia over the last 2000 years. Glob. Biogeochem. Cycles 23 GB1012 10.1029/2007GB003112 (2009)

    ADS  CAS  Article  Google Scholar 

  29. Duplessy, J. C. et al. Deepwater source variations during the last climatic cycle and their impact on the global deepwater circulation. Paleoceanography 3, 343–360 (1988)

    ADS  Article  Google Scholar 

  30. Crowley, T. J. Ice-age terrestrial carbon changes revisited. Glob. Biogeochem. Cycles 9, 377–389 (1995)

    ADS  CAS  Article  Google Scholar 

Download references

Acknowledgements

This work is a contribution to the European Project for Ice Coring in Antarctica (EPICA), a joint European Science Foundation/European Commission scientific programme, funded by the EU (EPICA-MIS) and by national contributions from Belgium, Denmark, France, Germany, Italy, the Netherlands, Norway, Sweden, Switzerland and the United Kingdom. The main logistic support was provided by IPEV and PNRA (at Dome C) and AWI (at Dronning Maud Land). We thank A. Landais, D. Rodriguez, E. Capron and G. Dreyfus for the contribution of δ15N data as well as P. Nyfeler and K. Grossenbacher for their technical support, T. Tschumi for sharing his Bern3D results, and J. Chappellaz for comments. We acknowledge financial support by the Swiss NSF, the DFG priority programme INTERDYNAMIK and the German climate programme DEKLIM. This is EPICA publication no. 227.

Author Contributions J.E., J.S., D.L., R.S. and M.E. performed the measurements. F.J. performed modelling and interpretation. M.L., H.F. and T.F.S designed the research. All authors participated in discussions on method development, interpretation and presentation of results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas F. Stocker.

Supplementary information

Supplementary Information

This file contains Supplementary Methods, a Supplementary Discussion, Supplementary Notes, Supplementary References, Supplementary Tables ST1-ST2 and Supplementary Figures S1-S7 with Legends. (PDF 467 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Elsig, J., Schmitt, J., Leuenberger, D. et al. Stable isotope constraints on Holocene carbon cycle changes from an Antarctic ice core. Nature 461, 507–510 (2009). https://doi.org/10.1038/nature08393

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature08393

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing