Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Coherent optical pulse sequencer for quantum applications

Abstract

The bandwidth and versatility of optical devices have revolutionized information technology systems and communication networks. Precise and arbitrary control of an optical field that preserves optical coherence is an important requisite for many proposed photonic technologies. For quantum information applications1,2, a device that allows storage and on-demand retrieval of arbitrary quantum states of light would form an ideal quantum optical memory. Recently, significant progress has been made in implementing atomic quantum memories using electromagnetically induced transparency, photon echo spectroscopy, off-resonance Raman spectroscopy and other atom–light interaction processes. Single-photon3,4 and bright-optical-field5,6 storage with quantum states have both been successfully demonstrated. Here we present a coherent optical memory based on photon echoes induced through controlled reversible inhomogeneous broadening. Our scheme allows storage of multiple pulses of light within a chosen frequency bandwidth, and stored pulses can be recalled in arbitrary order with any chosen delay between each recalled pulse. Furthermore, pulses can be time-compressed, time-stretched or split into multiple smaller pulses and recalled in several pieces at chosen times. Although our experimental results are so far limited to classical light pulses, our technique should enable the construction of an optical random-access memory for time-bin quantum information, and have potential applications in quantum information processing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: GEM schematic.
Figure 2: First-in–last-out (FILO) and first-in–first-out (FIFO) memory.
Figure 3: The coherent optical pulse sequencer.
Figure 4: Flexible pulse recall.

Similar content being viewed by others

References

  1. Duan, L. M., Lukin, M. D., Cirac, J. I. & Zoller, P. Long-distance quantum communication with atomic ensembles and linear optics. Nature 414, 413–418 (2001)

    Article  ADS  CAS  Google Scholar 

  2. Zoller, P. et al. Quantum information processing and communication. Eur. Phys. J. D 36, 203–228 (2005)

    Article  ADS  CAS  Google Scholar 

  3. Eisaman, M. D. et al. Electromagnetically induced transparency with tunable single-photon pulses. Nature 438, 837–841 (2005)

    Article  ADS  CAS  Google Scholar 

  4. Chanelieŕe, T. et al. Storage and retrieval of single photons transmitted between remote quantum memories. Nature 438, 833–836 (2005)

    Article  ADS  Google Scholar 

  5. Honda, K. et al. Storage and retrieval of a squeezed vacuum. Phys. Rev. Lett. 100, 093601 (2008)

    Article  ADS  Google Scholar 

  6. Appel, J., Figueroa, E., Korystov, D., Lobino, M. & Lvovsky, A. I. Quantum memory for squeezed light. Phys. Rev. Lett. 100, 093602 (2008)

    Article  ADS  Google Scholar 

  7. Nilsson, M. & Kröll, S. Solid state quantum memory using complete absorption and reemission of photons by tailored and externally controlled inhomogeneous absorption profiles. Opt. Commun. 247, 393–403 (2005)

    Article  ADS  CAS  Google Scholar 

  8. Alexander, A. L., Longdell, J. J., Sellars, M. J. & Manson, N. B. Photon echoes produced by switching electric fields. Phys. Rev. Lett. 96, 043602 (2006)

    Article  ADS  CAS  Google Scholar 

  9. Alexander, A. L., Longdell, J. J., Sellars, M. J. & Manson, N. B. Coherent information storage with photon echoes produced by switching electric fields. J. Lumin. 127, 94–97 (2007)

    Article  CAS  Google Scholar 

  10. de Riedmatten, H. & Afzelius, M. Staudt, M. U., Simon, C. & Gisin, N. A solid-state light–matter interface at the single-photon level. Nature 456, 773–777 (2008)

    Article  ADS  CAS  Google Scholar 

  11. Hétet, G., Longdell, J. J., Alexander, A. L., Lam, P. K. & Sellars, M. J. Electro-optic quantum memory for light using two-level atoms. Phys. Rev. Lett. 100, 023601 (2008)

    Article  ADS  Google Scholar 

  12. Hétet, G., Longdell, J. J., Sellars, M. J., Lam, P. K. & Buchler, B. C. Multimodal properties and dynamics of gradient echo quantum memory. Phys. Rev. Lett. 101, 203601 (2008)

    Article  ADS  Google Scholar 

  13. Longdell, J. J., Hétet, G., Lam, P. K. & Sellars, M. J. Analytic treatment of controlled reversible inhomogeneous broadening quantum memories for light using two-level atoms. Phys. Rev. A 78, 032337 (2008)

    Article  ADS  Google Scholar 

  14. Hétet, G. et al. Photon echoes generated by reversing magnetic field gradients in a rubidium vapor. Opt. Lett. 33, 2323–2325 (2008)

    Article  ADS  Google Scholar 

  15. Raymer, M. G. & Mostowski, J. Stimulated Raman scattering: unified treatment of spontaneous initiation and spatial propagation. Phys. Rev. A 24, 1980–1993 (1981)

    Article  ADS  CAS  Google Scholar 

  16. Gorshkov, A. V., André, A., Lukin, M. D. & Sørensen, A. S. Photon storage in Λ-type optically dense atomic media. I. Cavity model. Phys. Rev. A 76, 033804 (2007)

    Article  ADS  Google Scholar 

  17. Fraval, E., Sellars, M. J. & Longdell, J. J. Dynamic decoherence control of a solid-state nuclear-quadrupole qubit. Phys. Rev. Lett. 95, 030506 (2005)

    Article  ADS  CAS  Google Scholar 

  18. Sangouard, N., Simon, C., Afzelius, M. & Gisin, N. Analysis of a quantum memory for photons based on controlled reversible inhomogeneous broadening. Phys. Rev. A 75, 032327 (2007)

    Article  ADS  Google Scholar 

  19. Fleischhauer, M. & Lukin, M. D. Dark-state polaritons in electromagnetically induced transparency. Phys. Rev. Lett. 84, 5094–5097 (2000)

    Article  ADS  CAS  Google Scholar 

  20. Novikova, I., Phillips, N. B. & Gorshkov, A. V. Optimal light storage with full pulse-shape control. Phys. Rev. A 78, 021802(R) (2008)

    Article  ADS  Google Scholar 

  21. Simon, C. et al. Quantum repeaters with photon pair sources and multimode memories. Phys. Rev. Lett. 98, 190503 (2007)

    Article  ADS  Google Scholar 

  22. Brendel, J., Gisin, N., Tittel, W. & Zbinden, H. Pulsed energy-time entangled twin-photon source for quantum communication. Phys. Rev. Lett. 82, 2594–2597 (1999)

    Article  ADS  CAS  Google Scholar 

  23. Gisin, N., Moiseev, S. A. & Simon, C. Storage and retrieval of time-bin qubits with photon-echo-based quantum memories. Phys. Rev. A 76, 014302 (2007)

    Article  ADS  Google Scholar 

  24. Hétet, G., Peng, A., Johnsson, M. T., Hope, J. J. & Lam, P. K. Characterization of electromagnetically-induced-transparency-based continuous-variable quantum memories. Phys. Rev. A 77, 012323 (2008)

    Article  ADS  Google Scholar 

  25. Drummond, P. D. & Raymer, M. G. Stimulated Raman scattering: unified treatment of spontaneous initiation and spatial propagation. Phys. Rev. A 44, 2072–2085 (1991)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Bell for the solenoid design code and J. Close, C. Savage and P. Drummond for suggestions. This work was supported by the Australian Research Council.

Author Contributions The experiments were designed by G.H., J.J.L., B.C.B., M.H. and P.K.L., built by M.H., B.M.S. and G.H., modelled by M.H. with assistance from G.H. and carried out by M.H. with assistance and supervision from B.C.B. and P.K.L. The manuscript was prepared by B.C.B., M.H. and P.K.L. and edited by all authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ben C. Buchler.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hosseini, M., Sparkes, B., Hétet, G. et al. Coherent optical pulse sequencer for quantum applications. Nature 461, 241–245 (2009). https://doi.org/10.1038/nature08325

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature08325

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing