Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The global distribution of pure anorthosite on the Moon

Abstract

It has been thought that the lunar highland crust was formed by the crystallization and floatation of plagioclase from a global magma ocean1,2, although the actual generation mechanisms are still debated2,3. The composition of the lunar highland crust is therefore important for understanding the formation of such a magma ocean and the subsequent evolution of the Moon. The Multiband Imager4 on the Selenological and Engineering Explorer (SELENE)5 has a high spatial resolution of optimized spectral coverage, which should allow a clear view of the composition of the lunar crust. Here we report the global distribution of rocks of high plagioclase abundance (approaching 100 vol.%), using an unambiguous plagioclase absorption band recorded by the SELENE Multiband Imager. If the upper crust indeed consists of nearly 100 vol.% plagioclase, this is significantly higher than previous estimates of 82–92 vol.% (refs 2, 6, 7), providing a valuable constraint on models of lunar magma ocean evolution.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Locations of the 69 areas of investigation plotted on the USGS Clementine 750-nm basemap.
Figure 2: Results of Jackson analyses.
Figure 3: Results of spatial and spectral analyses of South Ray, Tycho, Tsiolkovsky and Orientale.
Figure 4: Comparison of two different spatial resolutions at Orientale.

References

  1. 1

    Taylor, S. R. Planetary Science: A Lunar Perspective (Lunar and Planetary Institute, 1982)

    Google Scholar 

  2. 2

    Warren, P. H. Lunar anorthosites and the magma-ocean plagioclase-flotation hypotheses: importance of FeO enrichment in the parent magma. Am. Mineral. 75, 46–58 (1990)

    ADS  CAS  Google Scholar 

  3. 3

    Longhi, J. A new view of lunar ferroan anorthosites: postmagma ocean petrogenesis. J. Geophys. Res. 108 10.1029/2002JE001941 (2003)

  4. 4

    Ohtake, M. et al. Performance and scientific objectives of the SELENE (KAGUYA) Multiband Imager. Earth Planets Space 60, 257–264 (2008)

    ADS  Article  Google Scholar 

  5. 5

    Kato, M., Sasaki, S., Tanaka, K., Iijima, Y. & Takizawa, Y. The Japanese lunar mission SELENE: science goals and present status. Adv. Space Res. 42, 294–300 (2008)

    ADS  Article  Google Scholar 

  6. 6

    Tompkins, S. & Pieters, C. M. Mineralogy of the lunar crust: results from Clementine. Meteorit. Planet. Sci. 34, 25–41 (1999)

    ADS  CAS  Article  Google Scholar 

  7. 7

    Wieczorek, M. A. et al. in New Views of the Moon (eds Jolliff, B. L. et al.) Vol. 60, Ch. 3 221–343 (The Mineralogical Society of America, 2006)

    Book  Google Scholar 

  8. 8

    Korotev, R. L., Jolliff, B. L., Zeigler, R. A., Gillis, J. J. & Haskin, L. A. Feldspathic lunar meteorites and their implications for compositional remote sensing of the lunar surface and the composition of the lunar crust. Geochim. Cosmochim. Acta 67, 4895–4923 (2003)

    ADS  CAS  Article  Google Scholar 

  9. 9

    Takeda, H. et al. Magnesian anorthosites and a deep crustal rock from the farside crust of the moon. Earth Planet. Sci. Lett. 247, 171–184 (2006)

    ADS  CAS  Article  Google Scholar 

  10. 10

    Clark, P. E. & Adler, I. Utilization of independent solar flux measurements to eliminate non-geochemical variation in X-ray fluorescence data. Proc. Lunar Planet. Sci. Conf. IX, 3029–3036 (1978)

    ADS  Google Scholar 

  11. 11

    Lawrence, D. J. et al. Thorium abundances on the lunar surface. J. Geophys. Res. E 105, 20307–20331 (1999)

    ADS  Article  Google Scholar 

  12. 12

    Jolliff, B. L., Gillis, J. J., Haskin, L. A., Korotev, R. L. & Wieczorek, M. A. Major lunar crustal terranes: surface expressions and crust-mantle origins. J. Geophys. Res. E 105, 4197–4216 (2000)

    ADS  CAS  Article  Google Scholar 

  13. 13

    Hawke, B. R. et al. Distribution and modes of occurrence of lunar anorthosite. J. Geophys. Res. E 108 10.1029/2002JE001890 (2003)

  14. 14

    Lucey, P. G. et al. in New Views of the Moon (eds Jolliff, B. L. et al.) Vol. 60, Ch. 2 83–220 (The Mineralogical Society of America, 2006)

    Book  Google Scholar 

  15. 15

    Adams, J. B. & Goulland, L. H. Plagioclase feldspars: visible and near infrared diffuse reflectance spectra as applied to remote sensing. Proc. Lunar Planet. Sci. Conf. IX, 2901–2909 (1978)

    ADS  Google Scholar 

  16. 16

    Pieters, C. M. The moon as a spectral calibration standard enabled by lunar samples: the Clementine example. Workshop on New Views of the Moon II, 8025–8026 (1999)

    Google Scholar 

  17. 17

    McEwen, A. et al. Summary of radiometric calibration and photometric normalizations steps for the Clementine UVVIS images. Lunar Planet. Sci. XXIX, 1466 (1998)

    ADS  Google Scholar 

  18. 18

    Spudis, P. D., Hawke, B. R. & Lucey, P. Composition of Orientale basin deposits and implications for the lunar basin-forming process. J. Geophys. Res. B 89, C197–C210 (1984)

    ADS  Article  Google Scholar 

  19. 19

    Lucey, P. G. Model near-infrared optical constants of olivine and pyroxene as a function of iron content. J. Geophys. Res. E 103, 1703–1713 (1998)

    ADS  CAS  Article  Google Scholar 

  20. 20

    Hawke, B. R., Lucey, P. G. & Bell, J. F. Spectral reflectance studies of Tycho crater: preliminary results. Proc. Lunar Planet. Sci. Conf. XVII, 999–1000 (1986)

    ADS  Google Scholar 

  21. 21

    McEwen, A. S. et al. Clementine observations of the Aristarchus region of the moon. Science 266, 1858–1862 (1994)

    ADS  CAS  Article  Google Scholar 

  22. 22

    Mouélic, S. L., Langevin, Y. & Erard, S. The distribution of olivine in the crater Aristarchus inferred from Clementine NIR data. Geophys. Res. Lett. 26, 1195–1198 (1999)

    ADS  Article  Google Scholar 

  23. 23

    Lucey, P. G. Radiative transfer model constraints on the shock state of remotely sensed lunar anorthosites. Geophys. Res. Lett. 29 10.1029/2001GL014655 (2002)

    Article  Google Scholar 

  24. 24

    Cintala, M. J. & Grieve, R. A. F. Scaling impact melting and crater dimensions: implications for the lunar cratering record. Meteorit. Planet. Sci. 33, 889–912 (1998)

    ADS  CAS  Article  Google Scholar 

  25. 25

    Longhi, J. & Jurewicz, S. R. Plagioclase-melt wetting angle and textures: implications for anorthosites. Proc. Lunar Planet. Sci. Conf. XXVI, 859–860 (1995)

    ADS  Google Scholar 

  26. 26

    Phinney, W. C. & Morrison, D. A. Partition coefficient for calcic plagioclase: Implications for Archean anorthosites. Geochim. Cosmochim. Acta 54, 1639–1654 (1990)

    ADS  CAS  Article  Google Scholar 

  27. 27

    Lafrance, B., John, B. E. & Scoates, J. S. Syn-emplacement recrystallization and deformation microstructures in the Poe Mountain anorthosite, Wyoming. Contrib. Mineral. Petrol. 122, 431–440 (1996)

    ADS  CAS  Article  Google Scholar 

  28. 28

    Grier, J. A., McEwen, A. S., Lucey, P. G., Milazzo, M. & Strom, R. G. Optical maturity of ejecta from large rayed lunar craters. J. Geophys. Res. E 106, 32847–32862 (2001)

    ADS  Article  Google Scholar 

  29. 29

    Lucey, P. G., Blewett, D. T., Taylor, G. J. & Hawke, B. R. Imaging of lunar surface maturity. J. Geophys. Res. E 105, 20377–20386 (2000)

    ADS  CAS  Article  Google Scholar 

  30. 30

    Matsunaga, T. et al. Discoveries on the lithology of lunar crater central peaks by SELENE Spectral Profiler. Geophys. Res. Lett. 35 10.1029/2008GL035868 (2008)

  31. 31

    Denevi, W., Lucey, P. G., Hochberg, E. J. & Steutel, D. Near-infrared optical constants of pyroxene as a function of iron and calcium content.. J. Geophys. Res. E 112 10.1029/2006JE002802 (2007)

  32. 32

    Sunshine, J. M. & Pieters, C. M. Determining the composition of olivine from reflectance spectroscopy. J. Geophys. Res. E 103, 13675–13688 (1998)

    ADS  CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank SELENE project team members Y. Takizawa, S. Sasaki, M. Kato and R. Nagashima. We also thank Fujitsu Limited engineers T. Maekawa, K. Tsubosaka, N. Tonoya, J. Inoue, N. Masuda and T. Nakashima. We are grateful to Mitsubishi Space Software Co. Ltd engineers M. Hashimoto, K. Torii, Y. Kurashina, A. Yoshizawa and S. Nakanotani. The long-term efforts by each of these teams were essential to our work. We are also grateful to P. G. Lucey for the optical constants of some minerals. The reviews by P. Warren and J. Longhi are much appreciated.

Author Contributions H.O., T.H., H.T., Y. Yamaguchi and T. Matsunaga suggested the original design of the Multiband Imager. M.O. finished the design and proposed the Multiband Imager observations. M.O., T. Matsunaga, J.H., H.O., J.T., T.S., N.H., R.N., H.D., S.M., S.K., Y. Yokota, T. Morota, C.H., Y.O., M.T., K.S., A.I. and N.A. developed the instrument and data processing system. T. Morota, C.H., M.T., M.O., T. Matsunaga, J.H., Y. Yokota, Y.O. and M.A. conducted the operation of the observation. M.O. and Y. Yokota conducted calibration and data analyses for this paper. M.O., T.A., H.M., H.T., Y. Yokota, N.H., R.N., T.H., J.H., T. Morota, K.K., T.S., K.S., T. Matsunaga, Y.O., S.S., A.Y. and C.M.P. contributed to writing the paper. All the authors, including M.S., H.A. and J.-L.J., discussed the results.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Makiko Ohtake.

Supplementary information

Supplementary Data

This file contains Supplementary Table 1 and Supplementary References. (PDF 186 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ohtake, M., Matsunaga, T., Haruyama, J. et al. The global distribution of pure anorthosite on the Moon. Nature 461, 236–240 (2009). https://doi.org/10.1038/nature08317

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing