Structure–function relationships of anaerobic gas-processing metalloenzymes

Article metrics

Abstract

Reactions involving H2, N2, CO, CO2 and CH4 are likely to have been central to the origin of life. This is indicated by the active-site structures of the enzymes involved, which are often reminiscent of minerals. Through the combined efforts of protein crystallography, various types of spectroscopy, theoretical calculations and model chemistry, it has been possible to put forward plausible mechanisms for gas-based metabolism by extant microorganisms. Although the reactions are based on metal centres, the protein matrix regulates reactivity and substrate and product trafficking through internal pathways, specific ligation and dielectricity.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Active sites of gas-processing metalloenzymes.
Figure 2: Enzymatic catalysis.
Figure 3: Enzyme folds and substrate tunnels.
Figure 4: Active-site biosyntheses.
Figure 5: Model compounds.

Accession codes

Primary accessions

Protein Data Bank

References

  1. 1

    Wächtershäuser, G. From volcanic origins of chemoautotrophic life to Bacteria, Archaea and Eukarya. Phil. Trans. R. Soc. B 361, 1787–1806 (2006). This paper presents one of the most popular theories for the autotrophic origin of life.

  2. 2

    Konhauser, K. O. et al. Oceanic nickel depletion and a methanogen famine before the Great Oxidation Event. Nature 458, 750–753 (2009).

  3. 3

    Childress, J. J. & Fischer, C. R. The biology of hydrothermal vent animals: physiology, biochemistry, and autotrophic symbioses. Oceanogr. Mar. Biol. Annu. Rev. 30, 337–441 (1992).

  4. 4

    Ragsdale, S. W. & Pierce, E. Acetogenesis and the Wood-Ljungdahl pathway of CO2 fixation. Biochim. Biophys. Acta 1784, 1873–1898 (2008).

  5. 5

    Silver, W. S. & Postgate, J. R. Evolution of asymbiotic nitrogen fixation. J. Theor. Biol. 40, 1–10 (1973).

  6. 6

    Rubio, L. M. & Ludden, P. W. Biosynthesis of the iron–molybdenum cofactor of nitrogenase. Annu. Rev. Microbiol. 62, 93–111 (2008).

  7. 7

    Bock, A., King, P. W., Blokesch, M. & Posewitz, M. C. Maturation of hydrogenases. Adv. Microb. Physiol. 51, 1–71 (2006).

  8. 8

    Hiromoto, T. et al. The crystal structure of C176A mutated [Fe]-hydrogenase suggests an acyl-iron ligation in the active site iron complex. FEBS Lett. 583, 585–590 (2009). This paper corrects a previous interpretation of the active-site structure of [Fe]-hydrogenase.

  9. 9

    Vignais, P. M. & Billoud, B. Occurrence, classification, and biological function of hydrogenases: an overview. Chem. Rev. 107, 4206–4272 (2007).

  10. 10

    Fontecilla-Camps, J. C., Volbeda, A., Cavazza, C. & Nicolet, Y. Structure/function relationships of [NiFe]- and [FeFe]-hydrogenases. Chem. Rev. 107, 4273–4303 (2007). This recent review covers most aspects concerning [NiFe]- and [FeFe]-hydrogenases.

  11. 11

    Volbeda, A. et al. Crystal-structure of the nickel–iron hydrogenase from Desulfovibrio gigas . Nature 373, 580–587 (1995).

  12. 12

    Garcin, E. et al. The crystal structure of a reduced [NiFeSe] hydrogenase provides an image of the activated catalytic center. Structure 7, 557–566 (1999).

  13. 13

    Nicolet, Y. et al. Crystallographic and FTIR spectroscopic evidence of changes in Fe coordination upon reduction of the active site of the Fe-only hydrogenase from Desulfovibrio desulfuricans . J. Am. Chem. Soc. 123, 1596–1601 (2001).

  14. 14

    Lubitz, W., Reijerse, E. & van Gastel, M. [NiFe] and [FeFe] hydrogenases studied by advanced magnetic resonance techniques. Chem. Rev. 107, 4331–4365 (2007).

  15. 15

    Barton, B. E., Olsen, M. T. & Rauchfuss, T. B. Aza- and oxodithiolates are probable proton relays in functional models for the [FeFe]-hydrogenases. J. Am. Chem. Soc. 130, 16834–16835 (2008). This paper presents model compounds, based on protonation studies, that favour azadithiolate as the small organic molecule at the active site.

  16. 16

    Pandey, A. S., Harris, T. V., Giles, L. J., Peters, J. W. & Szilagyi, R. K. Dithiomethylether as a ligand in the hydrogenase H-cluster. J. Am. Chem. Soc. 130, 4533–4540 (2008).

  17. 17

    Fontecilla-Camps, J. C. & Volbeda, A. in Handbook of Metalloproteins on-line edn (ed. Messerschmidt, A.) doi:10.1002/0470028637.met212 (Wiley, 2008).

  18. 18

    Volbeda, A. & Fontecilla-Camps, J. C. Structural bases for the catalytic mechanism of Ni-containing carbon monoxide dehydrogenases. Dalton Trans. 3443–3450 (2005).

  19. 19

    Darnault, C. et al. Ni-Zn-[Fe-4-S-4] and Ni-Ni-[Fe-4-S-4] clusters in closed and open subunits of acetyl-CoA synthase/carbon monoxide dehydrogenase. Nature Struct. Biol. 10, 271–279 (2003).

  20. 20

    Volbeda, A. & Fontecilla-Camps, J. C. Structure–function relationships of nickel–iron sites in hydrogenase and a comparison with the active sites of other nickel–iron enzymes. Coord. Chem. Rev. 249, 1609–1619 (2005).

  21. 21

    Andrade, S. L. A., Hu, Y., Ribbe, M. W. & Einsle, O. in Handbook of Metalloproteins on-line edn (ed. Messerschmidt, A.) doi:10.1002/0470028637.met224 (Wiley, 2008).

  22. 22

    Kirn, J. & Rees, D. C. Crystallographic structure and functional implications of the nitrogenase molybdenum–iron protein from Azotobacter vinelandii . Nature 360, 553–560 (1992).

  23. 23

    Einsle, O. et al. Nitrogenase MoFe-protein at 1.16 Å resolution: a central ligand in the FeMo-cofactor. Science 297, 1696–1700 (2002).

  24. 24

    Pelmenschikov, V., Case, D. A. & Noodleman, L. Ligand-bound S=1/2 FeMo-cofactor of nitrogenase: hyperfine interaction analysis and implication for the central ligand X identity. Inorg. Chem. 47, 6162–6172 (2008).

  25. 25

    Ermler, U., Grabarse, W., Shima, S., Goubeaud, M. & Thauer, R. K. Crystal structure of methyl coenzyme M reductase: the key enzyme of biological methane formation. Science 278, 1457–1462 (1997).

  26. 26

    Siegbahn, P. E. M., Tye, J. W. & Hall, M. B. Computational studies of [NiFe] and [FeFe] hydrogenases. Chem. Rev. 107, 4414–4435 (2007).

  27. 27

    Shima, S., Lyon, E. J., Thauer, R. K., Mienert, B. & Bill, E. Mössbauer studies of the iron–sulfur cluster-free hydrogenase: the electronic state of the mononuclear Fe active site. J. Am. Chem. Soc. 127, 10430–10435 (2005).

  28. 28

    Brecht, M., van Gastel, M., Buhrke, T., Friedrich, B. & Lubitz, W. Direct detection of a hydrogen ligand in the [NiFe] center of the regulatory H2-sensing hydrogenase from Ralstonia eutropha in its reduced state by HYSCORE and ENDOR spectroscopy. J. Am. Chem. Soc. 125, 13075–13083 (2003).

  29. 29

    Ogata, H. et al. Structural studies of the carbon monoxide complex of [NiFe]-hydrogenase from Desulfovibrio vulgaris Miyazaki F: suggestion for the initial activation site for dihydrogen. J. Am. Chem. Soc. 124, 11628–11635 (2002).

  30. 30

    Lemon, B. J. & Peters, J. W. Binding of exogenously added carbon monoxide at the active site of the iron-only hydrogenase (CpI) from Clostridium pasteurianum . Biochemistry 38, 12969–12973 (1999).

  31. 31

    Bruschi, M., Greco, C., Fantucci, P. & De Gioia, L. Structural and electronic properties of the [FeFe] hydrogenase H-cluster in different redox and protonation states. A DFT investigation. Inorg. Chem. 47, 6056–6071 (2008).

  32. 32

    Cammack, R., Patil, D., Aguirre, R. & Hatchikian, E. C. Redox properties of the ESR-detectable nickel in hydrogenase from Desulfovibrio gigas . FEBS Lett. 142, 289–292 (1982).

  33. 33

    Coremans, J. M., van Garderen, C. J. & Albracht, S. P. On the redox equilibrium between H2 and hydrogenase. Biochim. Biophys. Acta 1119, 148–156 (1992).

  34. 34

    Lill, S. O. N. & Siegbahn, P. E. M. An autocatalytic mechanism for [NiFe]-hydrogenase: reduction to Ni(I) followed by oxidative addition. Biochemistry 48, 1056–1066 (2009).

  35. 35

    Wu, M. et al. Life in hot carbon monoxide: the complete genome sequence of Carboxydothermus hydrogenoformans Z-2901. PLoS Genet. 1, e65 (2005).

  36. 36

    Jeoung, J. H. & Dobbek, H. Carbon dioxide activation at the NiFe-cluster of anaerobic carbon monoxide dehydrogenase. Science 318, 1461–1464 (2007).

  37. 37

    Gong, W. et al. Structure of the α2ε2 Ni-dependent CO dehydrogenase component of the Methanosarcina barkeri acetyl-CoA decarbonylase/synthase complex. Proc. Natl Acad. Sci. USA 105, 9558–9563 (2008).

  38. 38

    Grahame, D. A., Gencic, S. & DeMoll, E. A single operon-encoded form of the acetyl-CoA decarbonylase/synthase multienzyme complex responsible for synthesis and cleavage of acetyl-CoA in Methanosarcina thermophila . Arch. Microbiol. 184, 32–40 (2005).

  39. 39

    Eckert, N. A., Dougherty, W. G., Yap, G. P. A. & Riordan, C. G. Methyl transfer from methylcobaloxime to (Triphos)Ni(PPh3): Relevance to the mechanism of acetyl coenzyme A synthase. J. Am. Chem. Soc. 129, 9286–9287 (2007).

  40. 40

    Schenker, R. P. & Brunold, T. C. Computational studies on the A cluster of acetyl-coenzyme A synthase: geometric and electronic properties of the NiFeC species and mechanistic implications. J. Am. Chem. Soc. 125, 13962–13963 (2003).

  41. 41

    Amara, P., Volbeda, A., Fontecilla-Camps, J. C. & Field, M. J. A quantum chemical study of the reaction mechanism of acetyl-coenzyme A synthase. J. Am. Chem. Soc. 127, 2776–2784 (2005).

  42. 42

    Tan, X., Martinho, M., Stubna, A., Lindahl, P. A. & Munck, E. Mössbauer evidence for an exchange-coupled {[Fe4S4]1+ Ni-p1+} A-cluster in isolated α subunits of acetyl-coenzyme A synthase/carbon monoxide dehydrogenase. J. Am. Chem. Soc. 130, 6712–6713 (2008).

  43. 43

    Seravalli, J. & Ragsdale, S. W. Pulse-chase studies of the synthesis of acetyl-CoA by carbon monoxide dehydrogenase/acetyl-CoA synthase — evidence for a random mechanism of methyl and carbonyl addition. J. Biol. Chem. 283, 8384–8394 (2008).

  44. 44

    Tan, X., Surovtsev, I. V. & Lindahl, P. A. Kinetics of CO insertion and acetyl group transfer steps, and a model of the acetyl-CoA synthase catalytic mechanism. J. Am. Chem. Soc. 128, 12331–12338 (2006).

  45. 45

    Grabarse, W. et al. On the mechanism of biological methane formation: structural evidence for conformational changes in methyl-coenzyme M reductase upon substrate binding. J. Mol. Biol. 309, 315–330 (2001).

  46. 46

    Harmer, J. et al. A nickel hydride complex in the active site of methyl-coenzyme M reductase: implications for the catalytic cycle. J. Am. Chem. Soc. 130, 10907–10920 (2008).

  47. 47

    Sarangi, R., Dey, M. & Ragsdale, S. W. Geometric and electronic structures of the NiI and Methyl-NiIII intermediates of methyl-coenzyme M reductase. Biochemistry 48, 3146–3156 (2009).

  48. 48

    Yang, N., Reiher, M., Wang, M., Harmer, J. & Duin, E. C. Formation of a nickel–methyl species in methyl-coenzyme M reductase, an enzyme catalyzing methane formation. J. Am. Chem. Soc. 129, 11028–11029 (2007).

  49. 49

    Goenrich, M., Duin, E. C., Mahlert, F. & Thauer, R. K. Temperature dependence of methyl-coenzyme M reductase activity and of the formation of the methyl-coenzyme M reductase red2 state induced by coenzyme B. J. Biol. Inorg. Chem. 10, 333–342 (2005).

  50. 50

    Seefeldt, L. C., Dance, I. G. & Dean, D. R. Substrate interactions with nitrogenase: Fe versus Mo. Biochemistry 43, 1401–1409 (2004).

  51. 51

    Schrock, R. R. Catalytic reduction of dinitrogen to ammonia by molybdenum: theory versus experiment. Angew. Chem. Int. Edn 47, 5512–5522 (2008). This paper contains a clear discussion of the issue of iron versus molybdenum concerning the catalytic site in FeMo-co.

  52. 52

    Dance, I. The chemical mechanism of nitrogenase: calculated details of the intramolecular mechanism for hydrogenation of η2-N2 on FeMo-co to NH3 . Dalton Trans. 5977–5991 (2008).

  53. 53

    Igarashi, R. Y. & Seefeldt, L. C. Nitrogen fixation: the mechanism of the Mo-dependent nitrogenase. Crit. Rev. Biochem. Mol. Biol. 38, 351–384 (2003).

  54. 54

    Nicolet, Y., Lemon, B. J., Fontecilla-Camps, J. C. & Peters, J. W. A novel FeS cluster in Fe-only hydrogenases. Trends Biochem. Sci. 25, 138–143 (2000).

  55. 55

    Dobbek, H., Svetlitchnyi, V., Gremer, L., Huber, R. & Meyer, O. Crystal structure of a carbon monoxide dehydrogenase reveals a [Ni-4Fe-5S] cluster. Science 293, 1281–1285 (2001).

  56. 56

    Doukov, T. I., Iverson, T. M., Seravalli, J., Ragsdale, S. W. & Drennan, C. L. A. Ni-Fe-Cu center in a bifunctional carbon monoxide dehydrogenase/acetyl-CoA synthase. Science 298, 567–572 (2002).

  57. 57

    Montet, Y. et al. Gas access to the active site of Ni-Fe hydrogenases probed by X-ray crystallography and molecular dynamics. Nature Struct. Biol. 4, 523–526 (1997).

  58. 58

    Doukov, T. I., Blasiak, L. C., Seravalli, J., Ragsdale, S. W. & Drennan, C. L. Xenon in and at the end of the tunnel of bifunctional carbon monoxide dehydrogenase/acetyl-CoA synthase. Biochemistry 47, 3474–3483 (2008).

  59. 59

    Teixeira, V. H., Baptista, A. M. & Soares, C. M. Pathways of H2 toward the active site of [NiFe]-hydrogenase. Biophys. J. 91, 2035–2045 (2006).

  60. 60

    Jones, A. K., Sillery, E., Albracht, S. P. J. & Armstrong, F. A. Direct comparison of the electrocatalytic oxidation of hydrogen by an enzyme and a platinum catalyst. Chem. Commun. 866–867 (2002). This paper is an electrochemical study showing that the enzyme is as efficient as the transition metal in catalysis.

  61. 61

    Leroux, F. et al. Experimental approaches to kinetics of gas diffusion in hydrogenase. Proc. Natl Acad. Sci. USA 105, 11188–11193 (2008).

  62. 62

    Cohen, J., Kim, K., King, P., Seibert, M. & Schulten, K. Finding gas diffusion pathways in proteins: application to O2 and H2 transport in Cpl [FeFe]-hydrogenase and the role of packing defects. Structure 13, 1321–1329 (2005).

  63. 63

    Durrant, M. C. Controlled protonation of iron-molybdenum cofactor by nitrogenase: a structural and theoretical analysis. Biochem. J. 355, 569–576 (2001).

  64. 64

    Posewitz, M. C. et al. Discovery of two novel radical S-adenosylmethionine proteins required for the assembly of an active [FeFe] hydrogenase. J. Biol. Chem. 279, 25711–25720 (2004). This paper reports a very important discovery that has been instrumental in furthering our understanding of active-site synthesis and assembly.

  65. 65

    Nicolet, Y. & Drennan, C. L. AdoMet radical proteins — from structure to evolution — alignment of divergent protein sequences reveals strong secondary structure element conservation. Nucleic Acids Res. 32, 4015–4025 (2004).

  66. 66

    Bulen, W. A. & Lecomte, J. R. The nitrogenase system from Azotobacter: two-enzyme requirement for N2 reduction, ATP-dependent H2 evolution and ATP hydrolysis. Proc. Natl Acad. Sci. USA 56, 979–986 (1966).

  67. 67

    Shah, V. K. & Brill, W. J. Isolation of an iron-molybdenum cofactor from nitrogenase. Proc. Natl Acad. Sci. USA 74, 3249–3253 (1977).

  68. 68

    Curatti, L. et al. In vitro synthesis of the iron-molybdenum cofactor of nitrogenase from iron, sulfur, molybdenum, and homocitrate using purified proteins. Proc. Natl Acad. Sci. USA 104, 17626–17631 (2007).

  69. 69

    Jeon, W. B., Singer, S. W., Ludden, P. W. & Rubio, L. M. New insights into the mechanism of nickel insertion into carbon monoxide dehydrogenase: analysis of Rhodospirillum rubrum carbon monoxide dehydrogenase variants with substituted ligands to the [Fe3S4] portion of the active-site C-cluster. J. Biol. Inorg. Chem. 10, 903–912 (2005).

  70. 70

    Kerby, R. L., Ludden, P. W. & Roberts, G. P. In vivo nickel insertion into the carbon monoxide dehydrogenase of Rhodospirillum rubrum: molecular and physiological characterization of cooCTJ. J. Bacteriol. 179, 2259–2266 (1997).

  71. 71

    Jeon, W. B., Cheng, J. J. & Ludden, P. W. Purification and characterization of membrane-associated CooC protein and its functional role in the insertion of nickel into carbon monoxide dehydrogenase from Rhodospirillum rubrum . J. Biol. Chem. 276, 38602–38609 (2001).

  72. 72

    Kahnt, J. et al. Post-translational modifications in the active site region of methyl-coenzyme M reductase from methanogenic and methanotrophic archaea. FEBS J. 274, 4913–4921 (2007).

  73. 73

    Selmer, T. et al. The biosynthesis of methylated amino acids in the active site region of methyl-coenzyme M reductase. J. Biol. Chem. 275, 3755–3760 (2000).

  74. 74

    Georgiadis, M. M. et al. Crystallographic structure of the nitrogenase iron protein from Azotobacter vinelandii . Science 257, 1653–1659 (1992).

  75. 75

    Gasper, R., Scrima, A. & Wittinghofer, A. Structural insights into HypB, a GTP-binding protein that regulates metal binding. J. Biol. Chem. 281, 27492–27502 (2006).

  76. 76

    Lai, C. H., Reibenspies, J. H. & Darensbourg, M. Y. Thiolate bridged nickel-iron complexes containing both iron(0) and iron(II) carbonyls. Angew. Chem. Int. Edn Engl. 35, 2390–2393 (1996).

  77. 77

    Tanino, S., Li, Z., Ohki, Y. & Tatsumi, K. A dithiolate-bridged (CN)2(CO)Fe–Ni complex reproducing the IR bands of [NiFe] hydrogenase. Inorg. Chem. 48, 2358–2360 (2009). This paper contains the most biomimetic compounds reported so far.

  78. 78

    Dubois, M. & Dubois, D. L. The roles of the first and second coordination spheres in the design of molecular catalysts for H2 production and oxidation. Chem. Soc. Rev. 38, 62–72 (2009).

  79. 79

    Royer, A. M., Rauchfuss, T. B. & Wilson, S. R. Coordination chemistry of a model for the GP cofactor in the Hmd hydrogenase: hydrogen-bonding and hydrogen-transfer catalysis. Inorg. Chem. 47, 395–397 (2008).

  80. 80

    Ohki, Y., Ikagawa, Y. & Tatsumi, K. Synthesis of new [8Fe-7S] clusters: a topological link between the core structures of P-cluster, FeMo-co, and FeFe-co of nitrogenases. J. Am. Chem. Soc. 129, 10457–10465 (2007).

  81. 81

    Chen, Y. et al. Nitrogenase model complexes [Cp*Fe(µ-SR1)2(µ-η2-R2N=NH)FeCp*] (R1 = Me, Et; R2 = Me, Ph; Cp* = η5-C5Me5): synthesis, structure, and catalytic N–N bond cleavage of hydrazines on diiron centers. J. Am. Chem. Soc. 130, 15250–15251 (2008).

  82. 82

    Harrop, T. C., Olmstead, M. M. & Mascharak, P. K. Binding of CO to structural models of the bimetallic subunit at the A-cluster of acetyl coenzyme A synthase/CO dehydrogenase. Chem. Commun. 1744–1745 (2004).

  83. 83

    Rao, P. V. et al. On [FeS]-(µ2−SR)-M bridge formation in the synthesis of an A-cluster analogue of carbon monoxide dehydrogenase/acetyl-coenzyme A synthase. J. Am. Chem. Soc. 127, 1933–1945 (2005).

  84. 84

    Sun, J., Tessier, C. & Holm, R. H. Sulfur ligand substitution at the nickel(II) sites of cubane-type and cubanoid NiFe3S4 clusters relevant to the C-clusters of carbon monoxide dehydrogenase. Inorg. Chem. 46, 2691–2699 (2007).

  85. 85

    Tada, M. & Masuzawa, Y. Biomimetic methane generation and disulfide formation by catalysis with a nickel complex. Chem. Commun. 2161–2162 (1997).

  86. 86

    Rosenfield, R. E. Jr, Parthasarathy, R. & Dunitz, J. D. Directional preferences of nonbonded atomic contacts with divalent sulfur. 1. Electrophiles and nucleophiles. J. Am. Chem. Soc. 99, 4860–4862 (1977).

  87. 87

    Reissmann, S. et al. Taming of a poison: biosynthesis of the NiFe-hydrogenase cyanide ligands. Science 299, 1067–1070 (2003).

  88. 88

    Watanabe, S. et al. Crystal structures of [NiFe] hydrogenase maturation proteins HypC, HypD, and HypE: insights into cyanation reaction by thiol redox signaling. Mol. Cell 27, 29–40 (2007). This paper is a comprehensive structural analysis of active-site synthesis and assembly.

  89. 89

    Lenz, O., Zebger, I., Hamann, J., Hildebrandt, P. & Friedrich, B. Carbamoylphosphate serves as the source of CN−, but not of the intrinsic CO in the active site of the regulatory [NiFe]-hydrogenase from Ralstonia eutropha . FEBS Lett. 581, 3322–3326 (2007).

  90. 90

    Leach, M. R., Zhang, J. W. & Zamble, D. B. The role of complex formation between the Escherichia coli hydrogenase accessory factors HypB and SlyD. J. Biol. Chem. 282, 16177–16186 (2007).

  91. 91

    Rossmann, R., Maier, T., Lottspeich, F. & Bock, A. Characterization of a protease from Escherichia coli involved in hydrogenase maturation. Eur. J. Biochem. 227, 545–550 (1995).

  92. 92

    Sofia, H. J., Chen, G., Hetzler, B. G., Reyes-Spindola, J. F. & Miller, N. E. Radical SAM, a novel protein superfamily linking unresolved steps in familiar biosynthetic pathways with radical mechanisms: functional characterization using new analysis and information visualization methods. Nucleic Acids Res. 29, 1097–1106 (2001).

  93. 93

    Pilet, E. et al. The role of the maturase HydG in [FeFe]-hydrogenase active site synthesis and assembly. FEBS Lett. 583, 506–511 (2009).

  94. 94

    Nicolet, Y. et al. X-ray structure of the [FeFe]-hydrogenase maturase HydE from Thermotoga maritima . J. Biol. Chem. 283, 18861–18872 (2008).

  95. 95

    McGlynn, S. E. et al. HydF as a scaffold protein in [FeFe]-hydrogenase H-cluster biosynthesis. FEBS Lett. 582, 2183–2187 (2008).

  96. 96

    Zheng, L., White, R. H. & Dean, D. R. Purification of the Azotobacter vinelandii nifV-encoded homocitrate synthase. J. Bacteriol. 179, 5963–5966 (1997).

  97. 97

    Hernandez, J. A. et al. Metal trafficking for nitrogen fixation: NifQ donates molybdenum to NifEN/NifH for the biosynthesis of the nitrogenase FeMo-cofactor. Proc. Natl Acad. Sci. USA 105, 11679–11684 (2008).

  98. 98

    Obrist, B. V. et al. An iron carbonyl pyridonate complex related to the active site of the [Fe]-hydrogenase (Hmd). Inorg. Chem. 48, 3514–3516 (2009).

  99. 99

    Harrop, T. C., Olmstead, M. M. & Mascharak, P. K. Synthetic analogues of the active site of the A-cluster of acetyl coenzyme A synthase/CO dehydrogenase: syntheses, structures, and reactions with CO. Inorg. Chem. 45, 3424–3436 (2006).

  100. 100

    Signor, L. et al. Methane formation by reaction of a methyl thioether with a photo-excited nickel thiolate — process mimicking methanogenesis in Archaea. Chem. Eur. J. 6, 3508–3516 (2000).

  101. 101

    Hiromoto, T., Warkentin, E., Moll, J., Ermler, U. & Shima, S. The crystal structure of an [Fe]-hydrogenase–substrate complex reveals the framework for H2 activation. Angew. Chem. Int. Edn doi:10.1002/anie.200902695 (2009).

Download references

Acknowledgements

We thank D. M. Lawson and S. M. Mayer for providing data concerning the xenon sites in nitrogenase. We also thank the Commissariat à l'Energie Atomique and the Centre National de la Recherche Scientifique for institutional support, and the Agence Nationale de la Recherche and the BIOTEC programme of the European Union for funding.

Author information

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Reprints and permissions information is available at http://www.nature.com/reprints.

Correspondence should be addressed to J.C.F.-C. (juan-carlos.fontecilla@ibs.fr).

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Fontecilla-Camps, J., Amara, P., Cavazza, C. et al. Structure–function relationships of anaerobic gas-processing metalloenzymes. Nature 460, 814–822 (2009) doi:10.1038/nature08299

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.