Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Untangling aerosol effects on clouds and precipitation in a buffered system

Abstract

It is thought that changes in the concentration of cloud-active aerosol can alter the precipitation efficiency of clouds, thereby changing cloud amount and, hence, the radiative forcing of the climate system. Despite decades of research, it has proved frustratingly difficult to establish climatically meaningful relationships among the aerosol, clouds and precipitation. As a result, the climatic effect of the aerosol remains controversial. We propose that the difficulty in untangling relationships among the aerosol, clouds and precipitation reflects the inadequacy of existing tools and methodologies and a failure to account for processes that buffer cloud and precipitation responses to aerosol perturbations.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The lifetime (and albedo) effect as originally proposed.
Figure 2: Satellite image of the northeast Pacific Ocean showing ship tracks, both in thin closed-cellular stratocumulus regions and in open-cellular regions.
Figure 3: Aerosol–cloud interactions in the context of the atmospheric component of the Earth system.
Figure 4: The deepening effect.

Similar content being viewed by others

References

  1. Squires, P. The microstructure and colloidal stability of warm clouds. I. The relation between structure and stability. Tellus 10, 256–271 (1958)This paper shows that clouds that form in clean marine air are more apt to precipitate than clouds forming in air containing a high aerosol burden.

    ADS  Google Scholar 

  2. Liou, K.-N. & Ou, S.-C. The role of cloud microphysical processes in climate: an assessment from a one-dimensional perspective. J. Geophys. Res. 94, 8599–8607 (1989)

    Article  ADS  Google Scholar 

  3. Albrecht, B. A. Aerosols, cloud microphysics and fractional cloudiness. Science 245, 1227–1230 (1989)This study postulates that by suppressing precipitation, the aerosol might increase cloud lifetime and thus enhance radiative forcing.

    Article  ADS  CAS  Google Scholar 

  4. Pincus, R. & Baker, M. B. Effect of precipitation on the albedo susceptibility of clouds in the marine boundary layer. Nature 372, 250–252 (1994)

    Article  ADS  CAS  Google Scholar 

  5. Hartmann, D. L. & Doelling, D. On the net radiative effectiveness of clouds. J. Geophys. Res. 96, 869–891 (1980)

    Article  ADS  Google Scholar 

  6. Tiedtke, M. A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon. Weath. Rev. 117, 1779–1800 (1989)

    Article  ADS  Google Scholar 

  7. Bony, S. & Dufresne, J.-L. Marine boundary layer clouds at the heart of tropical cloud feedback uncertainties in climate models. Geophys. Res. Lett. 32, L20806 (2006)This paper shows that the sensitivity of shallow marine clouds to changing environmental conditions is the main source of uncertainty in tropical cloud feedbacks simulated by climate models.

    Article  ADS  Google Scholar 

  8. Rosenfeld, D. et al. Flood or drought: how do aerosols affect precipitation? Science 321, 1309–1313 (2008)

    Article  ADS  CAS  Google Scholar 

  9. Jiang, H., Xue, H., Teller, A., Feingold, G. & Levin, Z. Aerosol effects on the lifetime of shallow cumulus. Geophys. Res. Lett. 33 1029/2006GL026024 (2006)

  10. Twomey, S. The influence of pollution on the shortwave albedo of clouds. J. Atmos. Sci. 34, 1149–1152 (1977)This was the first study to point out the potential for the aerosol to brighten clouds, leading to the concept of cloud-mediated (or indirect) aerosol effects.

    Article  ADS  Google Scholar 

  11. Levin, Z. & Cotton, W. Aerosol Pollution Impact on Precipitation (Springer, 2008)This book provides a comprehensive review of aerosol effects on clouds and precipitation.

    Google Scholar 

  12. Storelvmo, T. et al. Modeling the Wegner-Bergeron-Findeisen process—implications for aerosol indirect effects. Environ. Res. Lett. 3, 045001 (2008)

    Article  ADS  Google Scholar 

  13. Stevens, B. et al. Pockets of open cells and drizzle in marine stratocumulus. Bull. Am. Meteorol. Soc. 86, 51–57 (2005)

    Article  ADS  Google Scholar 

  14. Radke, L. F., Coakley, J. A. & King, M. D. Direct and remote sensing observations of the effects of ships on clouds. J. Appl. Meteorol. 246, 1146–1149 (1989)

    CAS  Google Scholar 

  15. Comstock, K. K., Bretherton, C. S. & Yuter, S. E. Mesoscale variability and drizzle in southeast Pacific stratocumulus. J. Atmos. Sci. 62, 3792–3807 (2005)

    Article  ADS  Google Scholar 

  16. Sharon, T. M. et al. Aerosol and cloud microphysical characteristics of rifts and gradients in maritime stratocumulus clouds. J. Atmos. Sci. 63, 983–997 (2006)

    Article  ADS  Google Scholar 

  17. Stephens, G. et al. The CloudSat mission and the A-TRAIN: a new dimension to space-based observations of clouds and precipitation. Bull. Am. Meteorol. Soc. 83, 1771–1790 (2002)

    Article  ADS  Google Scholar 

  18. Coakley, J. A., Bernstein, L. & Durkee, A. Effect of ship-stack effluents on cloud reflectivity. Science 237, 1020–1022 (1987)

    Article  ADS  Google Scholar 

  19. Han, Q., Rossow, W. B. & Lacis, A. A. Near-global survey of effective droplet radii in liquid water clouds using ISCCP data. J. Clim. 7, 465–497 (1994)

    Article  ADS  Google Scholar 

  20. Sekiguchi, M. et al. A study of the direct and indirect effects of aerosols using global satellite data sets of aerosol and cloud parameters. J. Geophys. Res. 108 10.1029/2002JD003359 (2003)

  21. Loeb, N. G. & Schuster, G. L. An observational study of the relationship between cloud, aerosol and meteorology in broken low-level cloud conditions. J. Geophys. Res. 113, D14214 (2008)The introduction to this study provides a salient overview of many of the challenges of using satellite observations to relate clouds to the aerosol.

    Article  ADS  Google Scholar 

  22. Kaufman, Y. J., Koren, I., Remer, L. A., Rosenfeld, D. & Rudich, Y. The effect of smoke, dust, and pollution aerosol on shallow cloud development over the Atlantic Ocean. Proc. Natl Acad. Sci. USA 102, 11207–11212 (2005)

    Article  ADS  CAS  Google Scholar 

  23. Matheson, M. A., Coakley, J. A. & Tahnk, W. R. Aerosol and cloud property relationships for summertime stratiform clouds in the northeastern Atlantic from Advanced Very High Resolution Radiometer observations. J. Geophys. Res. 110, D24204 (2005)

    Article  ADS  Google Scholar 

  24. Nakajima, T., Higurashi, A., Kawamoto, K. & Penner, J. E. A possible correlation between satellite-derived cloud and aerosol microphysical parameters. Geophys. Res. Lett. 28 10.1029/2000GL012186 (2001)

  25. Rosenfeld, D. TRMM observed first direct evidence of smoke from forest fires inhibiting rainfall. Geophys. Res. Lett. 26, 3105–3108 (1999)

    Article  ADS  Google Scholar 

  26. Andreae, M. O. et al. Smoking rain clouds over the Amazon. Science 303, 1337–1342 (2004)

    Article  ADS  CAS  Google Scholar 

  27. Charlson, R., Ackerman, A., Bender, F.-M., Anderson, T. & Liu, Z. On the climate forcing consequences of the albedo continuum between cloudy and clear air. Tellus B 59 10.1111/j.1600–0889.2007.00297.x (2007)

  28. Koren, I., Remer, L. A., Kaufman, Y. J., Rudich, Y. & Martins, J. V. On the twilight zone between clouds and aerosols. Geophys. Res. Lett. 34, L08805 (2007)

    Article  ADS  Google Scholar 

  29. Anderson, J. B. Observations from airplanes of cloud and fog conditions along the southern Californian coast. Mon. Weath. Rev. 59, 264–270 (1931)

    Article  ADS  Google Scholar 

  30. Várnai, T. & Marshak, A. MODIS observations of enhanced clear sky reflectance near clouds. Geophys. Res. Lett. 36, L06807 (2009)This study shows that three-dimensional radiative interactions between clouds and their surroundings extend up to 15 km beyond the boundaries of the clouds.

    Article  ADS  Google Scholar 

  31. Avey, L., Garrett, T. J. & Stohl, A. Evaluation of the aerosol indirect effect using satellite, tracer transport model, and aircraft data from the International Consortium for Atmospheric Research on Transport and Transformation. J. Geophys. Res. 112 10.1029/2006JD007581 (2007)

  32. Rauber, R. et al. Rain in (shallow) cumulus over the ocean–the RICO campaign. Bull. Am. Meteorol. Soc. 88, 1912–1928 (2007)

    Article  ADS  Google Scholar 

  33. Nuijens, L., Stevens, B. & Siebesma, A. P. The environment of precipitating shallow cumulus convection. J. Atmos. Sci. 66, 1962–1969 (2009)

    Article  ADS  Google Scholar 

  34. Arakawa, A. in The Physical Basis of Climate and Climate Modelling 181–197 (GARP Publ. Ser. 16, ICSU/WMO, 1975)This prescient study was perhaps the first to appreciate the singular problem clouds pose for the modelling of the general circulation of the atmosphere.

    Google Scholar 

  35. Stevens, B. & Brenguier, J.-L. in Clouds in the Perturbed Climate System: Their Relationship to Energy Balance, Atmospheric Dynamics and Precipitation (eds Heintzenberg, J. & Charlson, R. J.) Ch. 8 (MIT Press, 2009)

    Google Scholar 

  36. Brenguier, J. L., Pawlowska, H. & Schüller, L. J. Cloud microphysical and radiative properties for parameterization and satellite monitoring of the indirect effect of aerosol on climate. J. Geophys. Res. 108 10.1029/2002JD002682 (2003)

  37. Mauger, G. S. & Norris, J. R. Meteorological bias in satellite estimates of aerosol-cloud relationships. Geophys. Res. Lett. 34 10.1029/2007GL029952 (2007)

  38. Hoppel, W. A., Fitzgerald, J. W., Frick, G. M., Larson, R. E. & Mack, E. J. Aerosol size distributions and optical properties found in the marine boundary layer over the Atlantic Ocean. J. Geophys. Res. 95, 3659–3686 (1990)

    Article  ADS  Google Scholar 

  39. Hegg, D., Majeed, R., Yuen, P., Baker, M. & Larson, T. The impacts of SO2 oxidation in cloud drops and in haze particles on aerosol light scattering and CCN activity. Geophys. Res. Lett. 23, 2613–2616 (1996)

    Article  ADS  CAS  Google Scholar 

  40. Boucher, O. & Lohmann, U. The sulfate-CCN-cloud albedo effect: a sensitivity study with two general circulation models. Tellus B 47, 281–300 (1995)

    Article  ADS  Google Scholar 

  41. Hoose, C., Kristjánsson, J. E., Kirkevåg, A., Seland, Ø. & Gettelman, A. Constraining cloud drop number concentration in GCMs suppresses the aerosol indirect effect. Geophys. Res. Lett. 36 10.1029/2009GL038568 (2009)

  42. Lohmann, U. & Feichter, J. Global indirect aerosol effects: a review. Atmos. Chem. Phys. 5, 715–737 (2005)This paper provides a comprehensive overview of aerosol–cloud interactions (indirect effects) in global climate models and suggest required improvements.

    Article  ADS  CAS  Google Scholar 

  43. Quaas, J. et al. Aerosol indirect effects — general circulation model intercomparison and evaluation with satellite data. Atmos. Chem. Phys. Discuss. 9, 12731–12779 (2009)

    Article  ADS  Google Scholar 

  44. Murphy, D. M. et al. An observationally based energy balance for the Earth since 1950. J. Geophys. Res. (in the press)

  45. Knutti, R., Stocker, T. F., Joos, F. & Plattner, G.-K. Constraints on radiative forcing and future climate change from observations and climate model ensembles. Nature 416, 719–723 (2002)

    Article  ADS  CAS  Google Scholar 

  46. Rotstayn, L. D. Indirect forcing by anthropogenic aerosols: a global climate model calculation of the effective-radius and cloud-lifetime effects. J. Geophys. Res. 104, 9369–9380 (1999)

    Article  ADS  Google Scholar 

  47. Lohmann, U. & Feichter, J. Impact of sulfate aerosols on albedo and lifetime of clouds: a sensitivity study with the ECHAM GCM. J. Geophys. Res. 102, 13685–13700 (1997)

    Article  ADS  CAS  Google Scholar 

  48. Feingold, G. & Siebert, H. in Clouds in the Perturbed Climate System: Their Relationship to Energy Balance, Atmospheric Dynamics and Precipitation, (eds Heintzenberg, J. & Charlson, R. J.) Ch. 14 (MIT Press, 2009)

    Google Scholar 

  49. Twomey, S. A. The nuclei of natural cloud formation, part II: the supersaturation in natural clouds and the variation of cloud droplet concentration. Pure Appl. Geophys. 43, 243–249 (1959)

    Article  Google Scholar 

  50. Martin, G. M., Johnson, D. & Spice, A. The measurement and parameterization of effective radius of droplets in warm stratocumulus clouds. J. Atmos. Sci. 51, 1823–1842 (1994)

    Article  ADS  Google Scholar 

  51. O’Dowd, C. D., Lowe, J. A., Smith, M. H. & Kaye, A. D. The relative importance of non-sea sulphate and sea-salt aerosol to the marine cloud condensation nuclei population: an improved multi-component aerosol-cloud droplet parameterization. Q. J. R. Meteorol. Soc. 125, 1295–1313 (1999)

    Article  ADS  Google Scholar 

  52. Ramanathan, V., Crutzen, P., Kiehl, J. & Rosenfeld, D. Aerosols, climate and the hydrological cycle. Science 294, 2119–2124 (2001)

    Article  ADS  CAS  Google Scholar 

  53. Johnson, D. B. The role of giant and ultragiant aerosol particles in warm rain initiation. J. Atmos. Sci. 39, 448–460 (1982)

    Article  ADS  Google Scholar 

  54. Seifert, A. & Beheng, K. D. A double-moment parameterization for simulating autoconversion, accretion and self collection. Atmos. Res. 59–60, 265–281 (2001)

    Article  Google Scholar 

  55. Pawlowska, H. & Brenguier, J.-L. An observational study of drizzle formation in stratocumulus clouds for general circulation model (GCM) parameterization. J. Geophys. Res. 33, L19810 (2003)

    ADS  Google Scholar 

  56. Comstock, K. K., Wood, R., Yuter, S. E. & Bretherton, C. S. Reflectivity and rain rate in and below drizzling stratocumulus. Q. J. R. Meteorol. Soc. 130, 2891–2918 (2004)

    Article  ADS  Google Scholar 

  57. vanZanten, M., Stevens, B., Vali, G. & Lenschow, D. Observations of drizzle in nocturnal marine stratocumulus. J. Atmos. Sci. 62, 88–106 (2005)

    Article  ADS  Google Scholar 

  58. Petters, M. D. et al. Accumulation mode aerosol, pockets of open cells and particle nucleation in the remote subtropical pacific marine boundary layer. J. Geophys. Res. 111, D02206 (2005)

    ADS  Google Scholar 

  59. Sorooshian, A., Feingold, G., Lebsock, M. D., Jiang, H. & Stephens, G. L. On the precipitation susceptibility of clouds to aerosol perturbations. Geophys. Res. Lett. 36, 10.1029/2009GL038993 (2009)

  60. Wood, R. Rate of loss of cloud droplets by coalescence in warm clouds. J. Geophys. Res. 111, D21205 (2006)

    Article  ADS  Google Scholar 

  61. Stevens, B. & Seifert, A. Understanding the macrophysical outcomes of microphysical choices in simulations of shallow cumulus convection. J. Meteorol. Soc. Jpn 86A, 141–163 (2008)

    Article  Google Scholar 

  62. Ayala, O., Rosa, B., Wang, L.-P. & Grabowski, W. Effects of turbulence on the geometric collision rate of sedimenting droplets. Part 1. Results from direct numerical simulation. N. J. Phys. 10, 075015 (2008)

    Article  Google Scholar 

  63. Stevens, B., Cotton, W. R., Feingold, G. & Moeng, C.-H. Large-eddy simulations of strongly precipitating, shallow, stratocumulus-topped boundary layers. J. Atmos. Sci. 55, 3616–3638 (1998)

    Article  ADS  Google Scholar 

  64. Ackerman, A. S., Kirkpatrick, M. P., Stevens, D. E. & Toon, O. B. The impact of humidity above stratiform clouds on indirect aerosol climate forcing. Nature 432, 1014–1017 (2004)

    Article  ADS  CAS  Google Scholar 

  65. Bretherton, C., Blossey, P. & Uchida, J. Cloud droplet sedimentation, entrainment efficiency and subtropical stratocumulus albedo. Geophys. Res. Lett. 34 10.1029/2006GL027648 (2007)

  66. Stevens, B. On the growth of layers of non-precipitating cumulus convection. J. Atmos. Sci. 64, 2916–2931 (2007)

    Article  ADS  Google Scholar 

  67. Wood, R. Cancellation of aerosol indirect effects in marine stratocumulus through cloud thinning. J. Atmos. Sci. 64, 2657–2669 (2007)

    Article  ADS  Google Scholar 

  68. Koren, I., Kaufman, Y. J., Rosenfeld, D., Remer, L. A. & Rudich, Y. Aerosol invigoration and restructuring of Atlantic convective clouds. Geophys. Res. Lett. 32, L14828 (2005)

    Article  ADS  Google Scholar 

  69. Tao, W.-K. Cloud resolving modeling. J. Meteorol. Soc. Jpn 85B, 305–330 (2007)

    Article  Google Scholar 

  70. Khain, A. P., BenMoshe, N. & Pokrovsky, A. Factors determining the impact of aerosols on surface precipitation from clouds: an attempt at classification. J. Atmos. Sci. 65, 1721–1748 (2008)

    Article  ADS  Google Scholar 

  71. Kay, J. E. & Wood, R. Timescale analysis of aerosol sensitivity during homogeneous freezing and implications for upper tropospheric water vapor budgets. Geophys. Res. Lett. 35, L10809 (2008)

    Article  ADS  Google Scholar 

  72. Lee, S. S., Donner, L. J., Phillips, V. T. J. & Ming, Y. Examination of aerosol effects on precipitation in deep convective clouds during the 1997 ARM summer experiment. Q. J. R. Meteorol. Soc. 134, 1201–1220 (2008)

    Article  ADS  Google Scholar 

  73. Feingold, G., Stevens, B., Cotton, W. R. & Frisch, A. S. On the relationship between drop in-cloud residence time and drizzle production in stratocumulus clouds. J. Atmos. Sci. 53, 1108–1122 (1996)

    Article  ADS  Google Scholar 

  74. Wang, S., Wang, Q. & Feingold, G. Turbulence, condensation and liquid water transport in numerically simulated nonprecipitating stratocumulus clouds. J. Atmos. Sci. 60, 262–278 (2003)

    Article  ADS  Google Scholar 

  75. Small, J. D., Chuang, P. Y., Feingold, G. & Jiang, H. Can aerosol increase cloud lifetime? Geophys. Res. Lett. (in the press)

  76. Lu, M.-L. & Seinfeld, J. Study of the aerosol indirect effect by large-eddy simulation of marine stratocumulus. J. Atmos. Sci. 62, 3909–3932 (2005)

    Article  ADS  Google Scholar 

  77. Sandu, I., Brenguier, J.-L. & Geoffroy, O. Aerosol impacts on the diurnal cycle of marine stratocumulus. J. Atmos. Sci. 65, 2705–2718 (2008)

    Article  ADS  Google Scholar 

  78. Han, Q., Rossow, W. B., Zeng, J. & Welch, R. Three different behaviors of liquid water path of water clouds in aerosol-cloud interactions. J. Atmos. Sci. 59, 726–735 (2002)

    Article  ADS  Google Scholar 

  79. Matsui, T. et al. Satellite-based assessment of marine low-cloud variability associated with aerosol, atmospheric stability and the diurnal cycle. J. Geophys. Res. 111 10.1029/2005JD006097 (2006)

  80. Houze, R. Mesoscale convective systems. Rev. Geophys. 42 10.1029/2004RG000150 (2004)

  81. Xue, H., Feingold, G. & Stevens, B. Aerosol effects on clouds, precipitation, and the organization of shallow cumulus convection. J. Atmos. Sci. 65, 392–406 (2008)

    Article  ADS  Google Scholar 

  82. Xue, H. & Feingold, G. Large eddy simulations of tradewind cumuli: investigation of aerosol indirect effects. J. Atmos. Sci. 63, 1605–1622 (2006)

    Article  ADS  Google Scholar 

  83. Ackerman, A. S. et al. Reduction of tropical cloudiness by soot. Science 288, 1042–1047 (2000)

    Article  ADS  CAS  Google Scholar 

  84. Koren, I., Kaufman, Y. J., Remer, L. A. & Martins, J. V. Measurement of the effect of Amazon smoke on inhibition of cloud formation. Science 303, 1342–1345 (2004)

    Article  ADS  CAS  Google Scholar 

  85. Feingold, G., Jiang, H. & Harrington, J. Y. On smoke suppression of clouds in Amazonia. Geophys. Res. Lett. 32 10.1029/2004GL021369 (2005)

  86. Lau, K.-M., Kim, M.-K. & Kim, K.-M. Asian summer monsoon anomalies induced by aerosol direct forcing: the role of the Tibetan Plateau. Clim. Dyn. 26, 855–864 (2006)

    Article  Google Scholar 

  87. Baker, M. & Charlson, R. J. Bistability of CCN concentrations and thermodynamics in the cloud-topped boundary layer. Nature 345, 142–145 (1990)This paper postulated the existence of two stable states for shallow clouds that have since been verified by observation.

    Article  ADS  Google Scholar 

  88. Latham, J. et al. Global temperature stabilization via controlled albedo enhancement of low-level maritime clouds. Phil. Trans. R. Soc. A 366, 3969–3987 (2008)

    Article  ADS  Google Scholar 

  89. Heliere, A., Lefebvre, A., Wehr, T., Bezy, J.-L. & Durand, Y. in Proc. Geosci. Remote Sensing Symp. 2007 4975–4978 (IEEE, 2007)

    Google Scholar 

  90. Henson, R. Satellite Observations to Benefit Science and Society: Recommended Missions for the Next Decade Committee on Earth Science and Applications from Space: A Community Assessment and Strategy for the Future 10 (US National Academies Press, 2008)

    Google Scholar 

  91. Jamison, L., Sommer, G. & Porche, I. R. High-Altitude Airships for the Future Force Army. Tech. Report TR-234 (RAND Corporation, 2005)

    Google Scholar 

  92. Wood, R., Mechoso, C., Bretherton, C., Huebert, B. & Weller, R. The VAMOS ocean-cloud-atmosphere-land study (VOCAL). U.S. CLIVAR Var. 5, 1–5 (2007)

    Google Scholar 

  93. McComiskey, A. M. et al. An assessment of aerosol-cloud interactions in marine stratus clouds based on surface remote sensing. J. Geophys. Res. 114 10.1029/2008JD011006 (2009)

Download references

Acknowledgements

We thank M. O. Andreae, T. Garrett, J. Marotzke, L. Nuijens, R. Pincus, I. Sandu, A. Seifert and R. Wood for comments on an earlier draft of this manuscript. We also wish to acknowledge contributions to this document arising through the course of many discussions with members of the Aerosol, Clouds, Precipitation and Climate Initiative planning team.

Author Contributions The ideas presented here were developed jointly by B.S. and G.F., and both authors participated actively in the writing of the manuscript and the drafting of the figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bjorn Stevens.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stevens, B., Feingold, G. Untangling aerosol effects on clouds and precipitation in a buffered system. Nature 461, 607–613 (2009). https://doi.org/10.1038/nature08281

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature08281

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing