Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Homotypic fusion of ER membranes requires the dynamin-like GTPase Atlastin

A Corrigendum to this article was published on 08 April 2010


Establishment and maintenance of proper architecture is essential for endoplasmic reticulum (ER) function. Homotypic membrane fusion is required for ER biogenesis and maintenance, and has been shown to depend on GTP hydrolysis. Here we demonstrate that Drosophila Atlastin—the fly homologue of the mammalian GTPase atlastin 1 involved in hereditary spastic paraplegia—localizes on ER membranes and that its loss causes ER fragmentation. Drosophila Atlastin embedded in distinct membranes has the ability to form trans-oligomeric complexes and its overexpression induces enlargement of ER profiles, consistent with excessive fusion of ER membranes. In vitro experiments confirm that Atlastin autonomously drives membrane fusion in a GTP-dependent fashion. In contrast, GTPase-deficient Atlastin is inactive, unable to form trans-oligomeric complexes owing to failure to self-associate, and incapable of promoting fusion in vitro. These results demonstrate that Atlastin mediates membrane tethering and fusion and strongly suggest that it is the GTPase activity that is required for ER homotypic fusion.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Endogenous Atlastin localizes on the ER.
Figure 2: Loss of Atlastin causes fragmentation and discontinuity of the ER.
Figure 3: Atlastin induces hyperfusion of ER membranes, homo-oligomerization and membrane tethering.
Figure 4: Atlastin mediates proteoliposome fusion.
Figure 5: GTPase-deficient Atlastin is inactivate and unable to mediate membrane tethering and fusion.


  1. Anderson, D. J. & Hetzer, M. W. Nuclear envelope formation by chromatin-mediated reorganization of the endoplasmic reticulum. Nature Cell Biol. 9, 1160–1166 (2007)

    CAS  Article  Google Scholar 

  2. Dreier, L. & Rapoport, T. A. In vitro formation of the endoplasmic reticulum occurs independently of microtubules by a controlled fusion reaction. J. Cell Biol. 148, 883–898 (2000)

    CAS  Article  Google Scholar 

  3. Vedrenne, C. & Hauri, H. P. Morphogenesis of the endoplasmic reticulum: beyond active membrane expansion. Traffic 7, 639–646 (2006)

    CAS  Article  Google Scholar 

  4. Voeltz, G. K., Prinz, W. A., Shibata, Y., Rist, J. M. & Rapoport, T. A. A class of membrane proteins shaping the tubular endoplasmic reticulum. Cell 124, 573–586 (2006)

    CAS  Article  Google Scholar 

  5. Zhao, X. et al. Mutations in a newly identified GTPase gene cause autosomal dominant hereditary spastic paraplegia. Nature Genet. 29, 326–331 (2001)

    CAS  Article  Google Scholar 

  6. Sanderson, C. M. et al. Spastin and atlastin, two proteins mutated in autosomal-dominant hereditary spastic paraplegia, are binding partners. Hum. Mol. Genet. 15, 307–318 (2006)

    CAS  Article  Google Scholar 

  7. Zhu, P. P. et al. Cellular localization, oligomerization, and membrane association of the hereditary spastic paraplegia 3A (SPG3A) protein atlastin. J. Biol. Chem. 278, 49063–49071 (2003)

    CAS  Article  Google Scholar 

  8. Lee, Y. et al. Loss of spastic paraplegia gene atlastin induces age-dependent death of dopaminergic neurons in Drosophila . Neurobiol. Aging 29, 84–94 (2006)

    Article  Google Scholar 

  9. Rismanchi, N., Soderblom, C., Stadler, J., Zhu, P. P. & Blackstone, C. Atlastin GTPases are required for Golgi apparatus and ER morphogenesis. Hum. Mol. Genet. 17, 1591–1604 (2008)

    CAS  Article  Google Scholar 

  10. Wakefield, S. & Tear, G. The Drosophila reticulon, Rtnl-1, has multiple differentially expressed isoforms that are associated with a sub-compartment of the endoplasmic reticulum. Cell. Mol. Life Sci. 63, 2027–2038 (2006)

    CAS  Article  Google Scholar 

  11. Snapp, E. L., Iida, T., Frescas, D., Lippincott-Schwartz, J. & Lilly, M. A. The fusome mediates intercellular endoplasmic reticulum connectivity in Drosophila ovarian cysts. Mol. Biol. Cell 15, 4512–4521 (2004)

    CAS  Article  Google Scholar 

  12. Stanley, H., Botas, J. & Malhotra, V. The mechanism of Golgi segregation during mitosis is cell type-specific. Proc. Natl Acad. Sci. USA 94, 14467–14470 (1997)

    ADS  CAS  Article  Google Scholar 

  13. Kondylis, V., Goulding, S. E., Dunne, J. C. & Rabouille, C. Biogenesis of Golgi stacks in imaginal discs of Drosophila melanogaster . Mol. Biol. Cell 12, 2308–2327 (2001)

    CAS  Article  Google Scholar 

  14. Brand, A. H. & Perrimon, N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118, 401–415 (1993)

    CAS  Google Scholar 

  15. Lippincott-Schwartz, J., Snapp, E. & Kenworthy, A. Studying protein dynamics in living cells. Nature Rev. Mol. Cell Biol. 2, 444–456 (2001)

    CAS  Article  Google Scholar 

  16. Parkes, T. L. et al. Extension of Drosophila lifespan by overexpression of human SOD1 in motorneurons. Nature Genet. 19, 171–174 (1998)

    CAS  Article  Google Scholar 

  17. Ward, T. H., Polishchuk, R. S., Caplan, S., Hirschberg, K. & Lippincott-Schwartz, J. Maintenance of Golgi structure and function depends on the integrity of ER export. J. Cell Biol. 155, 557–570 (2001)

    CAS  Article  Google Scholar 

  18. Ishihara, N., Eura, Y. & Mihara, K. Mitofusin 1 and 2 play distinct roles in mitochondrial fusion reactions via GTPase activity. J. Cell Sci. 117, 6535–6546 (2004)

    CAS  Article  Google Scholar 

  19. Rigaud, J. L. & Levy, D. Reconstitution of membrane proteins into liposomes. Methods Enzymol. 372, 65–86 (2003)

    CAS  Article  Google Scholar 

  20. Scott, B. L. et al. Liposome fusion assay to monitor intracellular membrane fusion machines. Methods Enzymol. 372, 274–300 (2003)

    CAS  Article  Google Scholar 

  21. Weber, T. et al. SNAREpins: minimal machinery for membrane fusion. Cell 92, 759–772 (1998)

    CAS  Article  Google Scholar 

  22. Praefcke, G. J. & McMahon, H. T. The dynamin superfamily: universal membrane tubulation and fission molecules? Nature Rev. Mol. Cell Biol. 5, 133–147 (2004)

    CAS  Article  Google Scholar 

  23. Borgese, N., Francolini, M. & Snapp, E. Endoplasmic reticulum architecture: structures in flux. Curr. Opin. Cell Biol. 18, 358–364 (2006)

    CAS  Article  Google Scholar 

  24. Lee, S. & Cooley, L. Jagunal is required for reorganizing the endoplasmic reticulum during Drosophila oogenesis. J. Cell Biol. 176, 941–952 (2007)

    CAS  Article  Google Scholar 

  25. Depienne, C., Stevanin, G., Brice, A. & Durr, A. Hereditary spastic paraplegias: an update. Curr. Opin. Neurol. 20, 674–680 (2007)

    CAS  Article  Google Scholar 

  26. Lindholm, D., Wootz, H. & Korhonen, L. ER stress and neurodegenerative diseases. Cell Death Differ. 13, 385–392 (2006)

    CAS  Article  Google Scholar 

  27. Polishchuk, R. S. & Mironov, A. A. Correlative video light/electron microscopy. Curr. Protoc. Cell Biol. Chapter 4, Unit–4.8 (2001)

    PubMed  Google Scholar 

  28. Rigaud, J. L., Pitard, B. & Levy, D. Reconstitution of membrane proteins into liposomes: application to energy-transducing membrane proteins. Biochim. Biophys. Acta 1231, 223–246 (1995)

    Article  Google Scholar 

  29. Giordano, E., Rendina, R., Peluso, I. & Furia, M. RNAi triggered by symmetrically transcribed transgenes in Drosophila melanogaster . Genetics 160, 637–648 (2002)

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Schaub, J. R., Lu, X., Doneske, B., Shin, Y. K. & McNew, J. A. Hemifusion arrest by complexin is relieved by Ca2+-synaptotagmin I. Nature Struct. Mol. Biol. 13, 748–750 (2006)

    CAS  Article  Google Scholar 

  31. Schaffner, W. & Weissmann, C. A rapid, sensitive, and specific method for the determination of protein in dilute solution. Anal. Biochem. 56, 502–514 (1973)

    CAS  Article  Google Scholar 

Download references


We thank J. Lippincott-Schwartz, R. Rikhy, M. Buszczak, M. Ramaswami and J. Kim for providing Drosophila strains, A. Gazziero for generating transgenic lines, and E. Giordano for the provision of the SympUAST vector. We thank M. G. Rossetto for support throughout the duration of the work, N. D’Elia for technical assistance, R. Polishchuck and the Telethon EM core facility, and W. Guo for help with EM analysis of negative stained Drosophila Atlastin proteoliposomes. This work was supported by grants from the National Institutes of Health (GM71832) and the G. Harold and Leila Mathers Charitable Foundation to J.A.M., and from Telethon-Italy, the Italian Ministry of Health and the Foundation Compagnia di San Paolo to A.D.

Author Contributions G.O. and D.P. contributed to the experimental design and carried out all Drosophila work. D.P. developed and performed the vesicle immunoprecipitation assay. J.T. performed HeLa cell transfection and immunoprecipitation experiments. S.L., T.J.M. and J.E.F. carried out liposome production, analyses and in vitro fusion. M.M. and A.E. conducted electron microscopy experiments. A.M. contributed to the experimental design and discussions. J.A.M. designed and supervised liposome production, analyses and in vitro fusion and contributed to writing the manuscript. A.D. conceived and designed the study, supervised Drosophila and cell culture experiments and wrote the manuscript.

Author information

Authors and Affiliations


Corresponding authors

Correspondence to James A. McNew or Andrea Daga.

Supplementary information

Supplementary Information

This file contains Supplementary Notes, Supplementary Figures S1-S16 with Legends and Supplementary References. (PDF 4738 kb)

Supplementary Movie 1

This movie shows a 3D reconstruction of confocal stacks from wild type muscle labelled with GFP-KDEL. (MPG 5698 kb)

Supplementary Movie 2

This movie shows a 3D reconstruction of confocal stacks from Datlastin mutant muscle labelled with GFP-KDEL. Loss of Datlastin results in a more sparse and fragmented ER network compared to wild type animal in movie 1. (MPG 5266 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Orso, G., Pendin, D., Liu, S. et al. Homotypic fusion of ER membranes requires the dynamin-like GTPase Atlastin. Nature 460, 978–983 (2009).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing