Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

An upper limit on the stochastic gravitational-wave background of cosmological origin

Abstract

A stochastic background of gravitational waves is expected to arise from a superposition of a large number of unresolved gravitational-wave sources of astrophysical and cosmological origin. It should carry unique signatures from the earliest epochs in the evolution of the Universe, inaccessible to standard astrophysical observations1. Direct measurements of the amplitude of this background are therefore of fundamental importance for understanding the evolution of the Universe when it was younger than one minute. Here we report limits on the amplitude of the stochastic gravitational-wave background using the data from a two-year science run of the Laser Interferometer Gravitational-wave Observatory2 (LIGO). Our result constrains the energy density of the stochastic gravitational-wave background normalized by the critical energy density of the Universe, in the frequency band around 100 Hz, to be <6.9 × 10-6 at 95% confidence. The data rule out models of early Universe evolution with relatively large equation-of-state parameter3, as well as cosmic (super)string models with relatively small string tension4 that are favoured in some string theory models5. This search for the stochastic background improves on the indirect limits from Big Bang nucleosynthesis1,6 and cosmic microwave background7 at 100 Hz.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Sensitivities of LIGO interferometers.
Figure 2: Comparison of different SGWB measurements and models.
Figure 3: Constraining early Universe evolution.
Figure 4: Models involving cosmic strings.
Figure 5: Pre-Big-Bang models.

References

  1. 1

    Maggiore, M. Gravitational wave experiments and early universe cosmology. Phys. Rep. 331, 283–367 (2000)

    ADS  Article  Google Scholar 

  2. 2

    Abbott, B. et al. Detector description and performance for the first coincidence observations between LIGO and GEO. Nucl. Instrum. Meth. A 517, 154–179 (2004)

    CAS  ADS  Article  Google Scholar 

  3. 3

    Boyle, L. & Buonanno, A. Relating gravitational wave constraints from primordial nucleosynthesis, pulsar timing, laser interferometers, and the CMB: implications for the early universe. Phys. Rev. D 78, 043531 (2008)

    ADS  Article  Google Scholar 

  4. 4

    Siemens, X., Mandic, V. & Creighton, J. Gravitational-wave stochastic background from cosmic strings. Phys. Rev. Lett. 98, 111101 (2007)

    ADS  Article  Google Scholar 

  5. 5

    Sarangi, S. & Tye, S. H. H. Cosmic string production towards the end of brane inflation. Phys. Lett. B 536, 185–192 (2002)

    CAS  ADS  Article  Google Scholar 

  6. 6

    Allen, B. The stochastic gravity-wave background: sources and detection. Preprint at &lt;http://arXiv.org/abs/grqc/9604033&gt; (1996)

  7. 7

    Smith, T. L., Pierpaoli, E. & Kamionkowski, M. A new cosmic microwave background constraint to primordial gravitational waves. Phys. Rev. Lett. 97, 021301 (2006)

    ADS  Article  Google Scholar 

  8. 8

    Allen, B. & Romano, J. Detecting a stochastic background of gravitational radiation: signal processing strategies and sensitivities. Phys. Rev. D 59, 102001 (1999)

    ADS  Article  Google Scholar 

  9. 9

    Starobinskii, A. A. Spectrum of relict gravitational radiation and the early state of the universe. JETP Lett. 30, 682–685 (1979)

    ADS  Google Scholar 

  10. 10

    Bar-Kana, R. Limits on direct detection of gravitational waves. Phys. Rev. D 50, 1157–1162 (1994)

    CAS  ADS  Article  Google Scholar 

  11. 11

    Brustein, R. et al. Relic gravitational waves from string cosmology. Phys. Lett. B 361, 45–51 (1995)

    CAS  ADS  MathSciNet  Article  Google Scholar 

  12. 12

    Buonanno, A. et al. Spectrum of relic gravitational waves in string cosmology. Phys. Rev. D 55, 3330–3336 (1997)

    CAS  ADS  Article  Google Scholar 

  13. 13

    Mandic, V. & Buonanno, A. Accessibility of the pre-big-bang models to LIGO. Phys. Rev. D 73, 063008 (2006)

    ADS  Article  Google Scholar 

  14. 14

    Apreda, R. et al. Gravitational waves from electroweak phase transitions. Nucl. Phys. B 631, 342–368 (2002)

    ADS  Article  Google Scholar 

  15. 15

    Kibble, T. W. B. Topology of cosmic domains and strings. J. Phys. A 9, 1387–1398 (1976)

    ADS  Article  Google Scholar 

  16. 16

    Damour, T. & Vilenkin, A. Gravitational radiation from cosmic (super)strings: bursts, stochastic background, and observational windows. Phys. Rev. D 71, 063510 (2005)

    ADS  Article  Google Scholar 

  17. 17

    Regimbau, T. & de Freitas Pacheco, J. A. Gravitational wave background from magnetars. Astron. Astrophys. 447, 1–8 (2006)

    ADS  Article  Google Scholar 

  18. 18

    Regimbau, T. & de Freitas Pacheco, J. A. Cosmic background of gravitational waves from rotating neutron stars. Astron. Astrophys. 376, 381–385 (2001)

    ADS  Article  Google Scholar 

  19. 19

    Acernese, F. et al. Status of Virgo. Class. Quant. Grav. 25, 114045 (2008)

    ADS  Article  Google Scholar 

  20. 20

    Willke, B. et al. The GEO-HF project. Class. Quant. Grav. 23, S207–S214 (2006)

    Article  Google Scholar 

  21. 21

    Bennet, C. L. et al. First-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: preliminary maps and basic results. Astrophys. J. 148 (Suppl.). 1–28 (2003)

    ADS  Article  Google Scholar 

  22. 22

    Abbott, B. et al. Searching for a stochastic background of gravitational waves with the Laser Interferometer Gravitational-Wave Observatory. Astrophys. J. 659, 918–930 (2007)

    CAS  ADS  Article  Google Scholar 

  23. 23

    Cyburt, R. H. et al. New BBN limits on physics beyond the standard model from 4He. Astropart. Phys. 23, 313–323 (2005)

    ADS  Article  Google Scholar 

  24. 24

    Grishchuk, L. P. & Sidorov, Yu. V. Squeezed quantum states of relic gravitons and primordial density fluctuations. Phys. Rev. D 42, 3413–3421 (1990)

    CAS  ADS  MathSciNet  Article  Google Scholar 

  25. 25

    Advanced LIGO Team. Advanced LIGO reference design. LIGO preprint at &lt;http://www.ligo.caltech.edu/docs/M/M060056-10.pdf&gt; (2007)

  26. 26

    Bender, P. L. & Danzmann, K. & the LISA study team . Laser Interferometer Space Antenna for the Detection and Observation of Gravitational Waves: Pre-Phase A Report 2nd edn (MPQ233, Max-Plank Institut für Quantenoptik, 1998)

    Google Scholar 

  27. 27

    Jenet, F. A. et al. Upper bounds on the low-frequency stochastic gravitational wave background from pulsar timing observations: current limits and future prospects. Astrophys. J. 653, 1571–1576 (2006)

    ADS  Article  Google Scholar 

  28. 28

    Komatsu, E. et al. Five-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: cosmological interpretation. Astrophys. J. 180 (Suppl.). 330–376 (2009)

    Article  Google Scholar 

  29. 29

    Siemens, X. et al. Size of the smallest scales in cosmic string networks. Phys. Rev. D 66, 043501 (2002)

    ADS  Article  Google Scholar 

  30. 30

    Siemens, X. et al. Gravitational wave bursts from cosmic (super)strings: quantitative analysis and constraints. Phys. Rev. D 73, 105001 (2006)

    ADS  Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the support of the United States National Science Foundation for the construction and operation of the LIGO Laboratory, the Science and Technology Facilities Council of the United Kingdom, the Max Planck Society, and the State of Niedersachsen/Germany for support of the construction and operation of the GEO600 detector, and the Italian Istituto Nazionale di Fisica Nucleare and the French Centre National de la Recherche Scientifique for the construction and operation of the Virgo detector. We also acknowledge the support of the research by these agencies and by the Australian Research Council, the Council of Scientific and Industrial Research of India, the Istituto Nazionale di Fisica Nucleare of Italy, the Spanish Ministerio de Educacion y Ciencia, the Conselleria d'Economia Hisenda i Innovacio of the Govern de les Illes Balears, the Royal Society, the Scottish Funding Council, the Scottish Universities Physics Alliance, The National Aeronautics and Space Administration, the Carnegie Trust, the Leverhulme Trust, the David and Lucile Packard Foundation, the Research Corporation, and the Alfred P. Sloan Foundation.

Author Contributions are listed in Supplementary Information.

Author information

Affiliations

Consortia

Corresponding author

Correspondence to V. Mandic.

Additional information

Lists of participants and their affiliations appear at the end of the paper.

Supplementary information

Supplementary Information

This file contains Supplementary Methods, Supplementary Results, Supplementary Data and Supplementary Figures 1-7 with Legends. (PDF 398 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

The LIGO Scientific Collaboration & The Virgo Collaboration. An upper limit on the stochastic gravitational-wave background of cosmological origin. Nature 460, 990–994 (2009). https://doi.org/10.1038/nature08278

Download citation

Further reading

  • The next detectors for gravitational wave astronomy

    • David Blair
    • , Li Ju
    • , ChunNong Zhao
    • , LinQing Wen
    • , HaiXing Miao
    • , RongGen Cai
    • , JiangRui Gao
    • , XueChun Lin
    • , Dong Liu
    • , Ling-An Wu
    • , ZongHong Zhu
    • , Giles Hammond
    • , Ho Jung Paik
    • , Viviana Fafone
    • , Alessio Rocchi
    • , Carl Blair
    • , YiQiu Ma
    • , JiaYi Qin
    •  & Michael Page

    Science China Physics, Mechanics & Astronomy (2015)

  • Gravitational waves: search results, data analysis and parameter estimation

    • Pia Astone
    • , Alan Weinstein
    • , Michalis Agathos
    • , Michał Bejger
    • , Nelson Christensen
    • , Thomas Dent
    • , Philip Graff
    • , Sergey Klimenko
    • , Giulio Mazzolo
    • , Atsushi Nishizawa
    • , Florent Robinet
    • , Patricia Schmidt
    • , Rory Smith
    • , John Veitch
    • , Madeline Wade
    • , Sofiane Aoudia
    • , Sukanta Bose
    • , Juan Calderon Bustillo
    • , Priscilla Canizares
    • , Colin Capano
    • , James Clark
    • , Alberto Colla
    • , Elena Cuoco
    • , Carlos Da Silva Costa
    • , Tito Dal Canton
    • , Edgar Evangelista
    • , Evan Goetz
    • , Anuradha Gupta
    • , Mark Hannam
    • , David Keitel
    • , Benjamin Lackey
    • , Joshua Logue
    • , Satyanarayan Mohapatra
    • , Francesco Piergiovanni
    • , Stephen Privitera
    • , Reinhard Prix
    • , Michael Pürrer
    • , Virginia Re
    • , Roberto Serafinelli
    • , Leslie Wade
    • , Linqing Wen
    • , Karl Wette
    • , John Whelan
    • , C. Palomba
    •  & G. Prodi

    General Relativity and Gravitation (2015)

  • Observational results from the LIGO and Virgo detectors

    • Marie Anne Bizouard

    General Relativity and Gravitation (2014)

  • Gravitational wave astronomy

    • Gabriela González
    • , Andrea Viceré
    •  & Linqing Wen

    Frontiers of Physics (2013)

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing