Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Initiation of myoblast to brown fat switch by a PRDM16–C/EBP-β transcriptional complex


Brown adipose cells are specialized to dissipate chemical energy in the form of heat, as a physiological defence against cold and obesity1. PRDM16 (PR domain containing 16) is a 140 kDa zinc finger protein that robustly induces brown fat determination and differentiation2. Recent data suggests that brown fat cells arise in vivo from a Myf5-positive, myoblastic lineage by the action of PRDM16 (ref. 3); however, the molecular mechanisms responsible for this developmental switch is unclear. Here we show that PRDM16 forms a transcriptional complex with the active form of C/EBP-β (also known as LAP), acting as a critical molecular unit that controls the cell fate switch from myoblastic precursors to brown fat cells. Forced expression of PRDM16 and C/EBP-β is sufficient to induce a fully functional brown fat program in naive fibroblastic cells, including skin fibroblasts from mouse and man. Transplantation of fibroblasts expressing these two factors into mice gives rise to an ectopic fat pad with the morphological and biochemical characteristics of brown fat. Like endogenous brown fat, this synthetic brown fat tissue acts as a sink for glucose uptake, as determined by positron emission tomography with fluorodeoxyglucose. These data indicate that the PRDM16–C/EBP-β complex initiates brown fat formation from myoblastic precursors, and may provide opportunities for the development of new therapeutics for obesity and type-2 diabetes.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Identification of C/EBP-β as a critical binding partner in the PRDM16 transcriptional complex.
Figure 2: C/EBP-β is required for initiation of the myoblast to brown fat conversion by PRDM16.
Figure 3: Reconstitution of the brown fat gene program in fibroblasts by PRDM16 and C/EBP-β.
Figure 4: Generation of functional brown adipose tissue in vivo by expression of PRDM16 and C/EBP-β.

Accession codes

Primary accessions

Gene Expression Omnibus

Data deposits

Microarray data has been deposited in the Gene Expression Omnibus (GEO) public database under accession GSE15895.


  1. 1

    Cannon, B. & Nedergaard, J. Brown adipose tissue: function and physiological significance. Physiol. Rev. 84, 277–359 (2004)

    CAS  Article  Google Scholar 

  2. 2

    Seale, P., Kajimura, S. & Spiegelman, B. M. Transcriptional control of brown adipocyte development and physiological function–of mice and men. Genes Dev. 23, 788–797 (2009)

    CAS  Article  Google Scholar 

  3. 3

    Seale, P. et al. PRDM16 controls a brown fat/skeletal muscle switch. Nature 454, 961–967 (2008)

    ADS  CAS  Article  Google Scholar 

  4. 4

    Nedergaard, J., Bengtsson, T. & Cannon, B. Unexpected evidence for active brown adipose tissue in adult humans. Am. J. Physiol. Endocrinol. Metab. 293, E444–E452 (2007)

    CAS  Article  Google Scholar 

  5. 5

    Cypess, A. M. et al. Identification and importance of brown adipose tissue in adult humans. N. Engl. J. Med. 360, 1509–1517 (2009)

    CAS  Article  Google Scholar 

  6. 6

    van Marken Lichtenbelt, W. D. et al. Cold-activated brown adipose tissue in healthy men. N. Engl. J. Med. 360, 1500–1508 (2009)

    CAS  Article  Google Scholar 

  7. 7

    Virtanen, K. A. et al. Functional brown adipose tissue in healthy adults. N. Engl. J. Med. 360, 1518–1525 (2009)

    CAS  Article  Google Scholar 

  8. 8

    Hansen, J. B. et al. Retinoblastoma protein functions as a molecular switch determining white versus brown adipocyte differentiation. Proc. Natl Acad. Sci. USA 101, 4112–4117 (2004)

    ADS  CAS  Article  Google Scholar 

  9. 9

    Scime, A. et al. Rb and p107 regulate preadipocyte differentiation into white versus brown fat through repression of PGC-1α. Cell Metab. 2, 283–295 (2005)

    CAS  Article  Google Scholar 

  10. 10

    Leonardsson, G. et al. Nuclear receptor corepressor RIP140 regulates fat accumulation. Proc. Natl Acad. Sci. USA 101, 8437–8442 (2004)

    ADS  CAS  Article  Google Scholar 

  11. 11

    Cederberg, A. et al. FOXC2 is a winged helix gene that counteracts obesity, hypertriglyceridemia, and diet-induced insulin resistance. Cell 106, 563–573 (2001)

    CAS  Article  Google Scholar 

  12. 12

    Kajimura, S. et al. Regulation of the brown and white fat gene programs through a PRDM16/CtBP transcriptional complex. Genes Dev. 22, 1397–1409 (2008)

    CAS  Article  Google Scholar 

  13. 13

    Seale, P. et al. Transcriptional control of brown fat determination by PRDM16. Cell Metab. 6, 38–54 (2007)

    CAS  Article  Google Scholar 

  14. 14

    Tontonoz, P., Hu, E. & Spiegelman, B. M. Stimulation of adipogenesis in fibroblasts by PPARγ2, a lipid- activated transcription factor. Cell 79, 1147–1156 (1994)

    CAS  Article  Google Scholar 

  15. 15

    Tontonoz, P. & Spiegelman, B. M. Fat and beyond: the diverse biology of PPARγ. Annu. Rev. Biochem. 77, 289–312 (2008)

    CAS  Article  Google Scholar 

  16. 16

    Mochizuki, N. et al. A novel gene, MEL1, mapped to 1p36.3 is highly homologous to the MDS1/EVI1 gene and is transcriptionally activated in t(1;3)(p36;q21)-positive leukemia cells. Blood 96, 3209–3214 (2000)

    CAS  PubMed  Google Scholar 

  17. 17

    Shing, D. C. et al. Overexpression of sPRDM16 coupled with loss of p53 induces myeloid leukemias in mice. J. Clin. Invest. 117, 3696–3707 (2007)

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18

    Haas, W. et al. Optimization and use of peptide mass measurement accuracy in shotgun proteomics. Mol. Cell. Proteomics 5, 1326–1337 (2006)

    CAS  Article  Google Scholar 

  19. 19

    Wu, Z., Xie, Y., Bucher, N. L. & Farmer, S. R. Conditional ectopic expression of C/EBPβ in NIH-3T3 cells induces PPARγ and stimulates adipogenesis. Genes Dev. 9, 2350–2363 (1995)

    CAS  Article  Google Scholar 

  20. 20

    Farmer, S. R. Transcriptional control of adipocyte formation. Cell Metab. 4, 263–273 (2006)

    CAS  Article  Google Scholar 

  21. 21

    Descombes, P. & Schibler, U. A liver-enriched transcriptional activator protein, LAP, and a transcriptional inhibitory protein, LIP, are translated from the same mRNA. Cell 67, 569–579 (1991)

    CAS  Article  Google Scholar 

  22. 22

    Wang, H. et al. CCAAT/enhancer binding protein-β is a transcriptional regulator of peroxisome-proliferator-activated receptor-γ coactivator-1α in the regenerating liver. Mol. Endocrinol. 22, 1596–1605 (2008)

    CAS  Article  Google Scholar 

  23. 23

    Tanaka, T., Yoshida, N., Kishimoto, T. & Akira, S. Defective adipocyte differentiation in mice lacking the C/EBPβ and/or C/EBPδ gene. EMBO J. 16, 7432–7443 (1997)

    CAS  Article  Google Scholar 

  24. 24

    Carmona, M. C. et al. Defective thermoregulation, impaired lipid metabolism, but preserved adrenergic induction of gene expression in brown fat of mice lacking C/EBPβ. Biochem. J. 389, 47–56 (2005)

    CAS  Article  Google Scholar 

  25. 25

    Screpanti, I. et al. Lymphoproliferative disorder and imbalanced T-helper response in C/EBPβ-deficient mice. EMBO J. 14, 1932–1941 (1995)

    CAS  Article  Google Scholar 

  26. 26

    Green, H. & Kehinde, O. Formation of normally differentiated subcutaneous fat pads by an established preadipose cell line. J. Cell. Physiol. 101, 169–171 (1979)

    CAS  Article  Google Scholar 

  27. 27

    Uldry, M. et al. Complementary action of the PGC-1 coactivators in mitochondrial biogenesis and brown fat differentiation. Cell Metab. 3, 333–341 (2006)

    CAS  Article  Google Scholar 

  28. 28

    Todaro, G. J. & Green, H. Quantitative studies of the growth of mouse embryo cells in culture and their development into established lines. J. Cell Biol. 17, 299–313 (1963)

    CAS  Article  Google Scholar 

  29. 29

    Rheinwald, J. G. et al. A two-stage, p16(INK4A)- and p53-dependent keratinocyte senescence mechanism that limits replicative potential independent of telomere status. Mol. Cell. Biol. 22, 5157–5172 (2002)

    CAS  Article  Google Scholar 

  30. 30

    Bezy, O., Vernochet, C., Gesta, S., Farmer, S. R. & Kahn, C. R. TRB3 blocks adipocyte differentiation through the inhibition of C/EBPβ transcriptional activity. Mol. Cell. Biol. 27, 6818–6831 (2007)

    CAS  Article  Google Scholar 

  31. 31

    Kinsella, T. M. & Nolan, G. P. Episomal vectors rapidly and stably produce high-titer recombinant retrovirus. Hum. Gene Ther. 7, 1405–1413 (1996)

    CAS  Article  Google Scholar 

  32. 32

    Rappsilber, J., Mann, M. & Ishihama, Y. Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nature Protocols 2, 1896–1906 (2007)

    CAS  Article  Google Scholar 

  33. 33

    Kersey, P. J. et al. The International Protein Index: an integrated database for proteomics experiments. Proteomics 4, 1985–1988 (2004)

    CAS  Article  Google Scholar 

  34. 34

    Elias, J. E. & Gygi, S. P. Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry. Nat. Methods 4, 207–214 (2007)

    CAS  Article  Google Scholar 

  35. 35

    Lockhart, D. J. et al. Expression monitoring by hybridization to high-density oligonucleotide arrays. Nature Biotechnol. 14, 1675–1680 (1996)

    CAS  Article  Google Scholar 

  36. 36

    Li, C. & Wong, W. H. Model-based analysis of oligonucleotide arrays: expression index computation and outlier detection. Proc. Natl Acad. Sci. USA 98, 31–36 (2001)

    ADS  CAS  Article  Google Scholar 

Download references


We are grateful to S. R. Farmer, J. Rheinwald and P. F. Johnson for providing cells and other reagents, R. Gupta for his critical comments on the manuscript, and J. Y. Choi and E. Naseri for their assistance. S.K. is supported by AHA scientist development grant (0930125N). P.S. is supported by a National Institutes of Health (NIH) grant (DK081605). This work was supported by grants from the Picower Foundation and the NIH (DK31405) to B.M.S., NIH HG3456 and GM67945 to S.P.G., and NIH/NCRR shared instrumentation grant S10-RR-023010.

Author Contributions S.K. and B.M.S. conceived and designed the experiments. S.K., K.K. and E.L. performed the experiments. All of the authors analysed the data. S.K. and B.M.S. wrote the paper.

Author information



Corresponding author

Correspondence to Bruce M. Spiegelman.

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1-12 with Legends and Supplementary Tables 1-2. (PDF 2985 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kajimura, S., Seale, P., Kubota, K. et al. Initiation of myoblast to brown fat switch by a PRDM16–C/EBP-β transcriptional complex. Nature 460, 1154–1158 (2009).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing