Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Direct observation of the binding state of the kinesin head to the microtubule

Abstract

The dimeric motor protein kinesin-1 converts chemical energy from ATP hydrolysis into mechanical work used to transport cargo along microtubules1,2. Cargo attached to the kinesin stalk moves processively in 8-nm increments3 as its twin motor domains (heads) carry out an asymmetric, ‘hand-over-hand’ walk4,5,6,7. The extent of individual head interactions with the microtubule during stepping, however, remains controversial4,8,9,10,11,12,13,14. A major experimental limitation has been the lack of a means to monitor the attachment of an individual head to the microtubule during movement, necessitating indirect approaches. Here we report the development of a single-molecule assay that can directly report head binding in a walking kinesin molecule, and show that only a single head is bound to the microtubule between steps at low ATP concentrations. A bead was linked to one of the two kinesin heads by means of a short DNA tether and used to apply rapidly alternating hindering and assisting loads with an optical trap. The time-dependent difference between forwards and backwards displacements of the bead alternated between two discrete values during stepping, corresponding to those intervals when the linked head adopted a bound or an unbound state. The linked head could only rebind the microtubule once ATP had become bound to its partner head.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Single-molecule observations of kinesin head motion.
Figure 2: Motion of a bead linked to one of the kinesin heads under alternating loads.
Figure 3: Histograms of bead displacements under alternating load.
Figure 4: A model for strain-based mechanochemical gating.

Similar content being viewed by others

References

  1. Block, S. M. Kinesin motor mechanics: binding, stepping, tracking, gating, and limping. Biophys. J. 92, 2986–2995 (2007)

    Article  ADS  CAS  Google Scholar 

  2. Vale, R. D. The molecular motor toolbox for intracellular transport. Cell 112, 467–480 (2003)

    Article  CAS  Google Scholar 

  3. Svoboda, K., Schmidt, C. F., Schnapp, B. J. & Block, S. M. Direct observation of kinesin stepping by optical trapping interferometry. Nature 365, 721–727 (1993)

    Article  ADS  CAS  Google Scholar 

  4. Yildiz, A., Tomishige, M., Vale, R. D. & Selvin, P. R. Kinesin walks hand-over-hand. Science 303, 676–678 (2004)

    Article  ADS  CAS  Google Scholar 

  5. Kaseda, K., Higuchi, H. & Hirose, K. Alternate fast and slow stepping of a heterodimeric kinesin molecule. Nature Cell Biol. 5, 1079–1082 (2003)

    Article  CAS  Google Scholar 

  6. Asbury, C. L., Fehr, A. N. & Block, S. M. Kinesin moves by an asymmetric hand-over-hand mechanism. Science 302, 2130–2134 (2003)

    Article  ADS  CAS  Google Scholar 

  7. Hackney, D. D. Evidence for alternating head catalysis by kinesin during microtubule-stimulated ATP hydrolysis. Proc. Natl Acad. Sci. USA 91, 6865–6869 (1994)

    Article  ADS  CAS  Google Scholar 

  8. Yildiz, A., Tomishige, M., Gennerich, A. & Vale, R. D. Intramolecular strain coordinates kinesin stepping behavior along microtubules. Cell 134, 1030–1041 (2008)

    Article  CAS  Google Scholar 

  9. Mori, T., Vale, R. D. & Tomishige, M. How kinesin waits between steps. Nature 450, 750–754 (2007)

    Article  ADS  CAS  Google Scholar 

  10. Alonso, M. C. et al. An ATP gate controls tubulin binding by the tethered head of kinesin-1. Science 316, 120–123 (2007)

    Article  ADS  CAS  Google Scholar 

  11. Hackney, D. D. The tethered motor domain of a kinesin-microtubule complex catalyzes reversible synthesis of bound ATP. Proc. Natl Acad. Sci. USA 102, 18338–18343 (2005)

    Article  ADS  CAS  Google Scholar 

  12. Kawaguchi, K., Uemura, S. & Ishiwata, S. Equilibrium and transition between single- and double-headed binding of kinesin as revealed by single-molecule mechanics. Biophys. J. 84, 1103–1113 (2003)

    Article  ADS  CAS  Google Scholar 

  13. Mandelkow, E. & Hoenger, A. Structures of kinesin and kinesin-microtubule interactions. Curr. Opin. Cell Biol. 11, 34–44 (1999)

    Article  CAS  Google Scholar 

  14. Asenjo, A. B. & Sosa, H. A mobile kinesin-head intermediate during the ATP-waiting state. Proc. Natl Acad. Sci. USA 106, 5657–5662 (2009)

    Article  ADS  CAS  Google Scholar 

  15. Block, S. M., Asbury, C. L., Shaevitz, J. W. & Lang, M. J. Probing the kinesin reaction cycle with a 2D optical force clamp. Proc. Natl Acad. Sci. USA 100, 2351–2356 (2003)

    Article  ADS  CAS  Google Scholar 

  16. Taniguchi, Y., Nishiyama, M., Ishii, Y. & Yanagida, T. Entropy rectifies the Brownian steps of kinesin. Nature Chem. Biol. 1, 342–347 (2005)

    Article  CAS  Google Scholar 

  17. Sindelar, C. V. & Downing, K. H. The beginning of kinesin’s force-generating cycle visualized at 9-Å resolution. J. Cell Biol. 177, 377–385 (2007)

    Article  CAS  Google Scholar 

  18. Kikkawa, M. & Hirokawa, N. High-resolution cryo-EM maps show the nucleotide binding pocket of KIF1A in open and closed conformations. EMBO J. 25, 4187–4194 (2006)

    Article  CAS  Google Scholar 

  19. Hwang, W., Lang, M. J. & Karplus, M. Force generation in kinesin hinges on cover-neck bundle formation. Structure 16, 62–71 (2008)

    Article  CAS  Google Scholar 

  20. Ma, Y.-Z. & Taylor, E. W. Interacting head mechanism of microtubule-kinesin ATPase. J. Biol. Chem. 272, 724–730 (1997)

    Article  CAS  Google Scholar 

  21. Gilbert, S. P., Moyer, M. L. & Johnson, K. A. Alternating site mechanism of the kinesin ATPase. Biochemistry 37, 792–799 (1998)

    Article  CAS  Google Scholar 

  22. Crevel, I., Carter, N., Schliwa, M. & Cross, R. Coupled chemical and mechanical reaction steps in a processive Neurospora kinesin. EMBO J. 18, 5863–5872 (1999)

    Article  CAS  Google Scholar 

  23. Klumpp, L. M., Hoenger, A. & Gilbert, S. P. Kinesin’s second step. Proc. Natl Acad. Sci. USA 101, 3444–3449 (2004)

    Article  ADS  CAS  Google Scholar 

  24. Rosenfeld, S. S., Fordyce, P. M., Jefferson, G. M., King, P. H. & Block, S. M. Stepping and stretching. How kinesin uses internal strain to walk processively. J. Biol. Chem. 278, 18550–18556 (2003)

    Article  CAS  Google Scholar 

  25. Guydosh, N. R. & Block, S. M. Backsteps induced by nucleotide analogs suggest the front head of kinesin is gated by strain. Proc. Natl Acad. Sci. USA 103, 8054–8059 (2006)

    Article  ADS  CAS  Google Scholar 

  26. Rice, S. et al. A structural change in the kinesin motor protein that drives motility. Nature 402, 778–784 (1999)

    Article  ADS  CAS  Google Scholar 

  27. Sablin, E. P. & Fletterick, R. J. Coordination between motor domains in processive kinesins. J. Biol. Chem. 279, 15707–15710 (2004)

    Article  CAS  Google Scholar 

  28. Lang, M. J., Asbury, C. L., Shaevitz, J. W. & Block, S. M. An automated two-dimensional optical force clamp for single molecule studies. Biophys. J. 83, 491–501 (2002)

    Article  ADS  CAS  Google Scholar 

  29. DeLano, W. L. PyMOL Molecular Viewer version 1.0r1. 〈http://www.pymol.org〉 (2002)

  30. Kerssemakers, J. W. et al. Assembly dynamics of microtubules at molecular resolution. Nature 442, 709–712 (2006)

    Article  ADS  CAS  Google Scholar 

  31. Fehr, A. N., Gutiérrez-Medina, B., Asbury, C. L. & Block, S. M. On the origin of kinesin limping. Biophys. J. (in the press)

Download references

Acknowledgements

We thank A. Dunn, B. Choi and W. Hwang for advice on labelling kinesin; S. Gilbert for advice on expressing kinesin; and B. Gutiérrez-Medina, C. Sindelar, C. Perez and K. Frieda for comments on the manuscript. This work was supported by grant GM51453 from the US National Institutes of Health.

Author Contributions N.R.G. designed the project, expressed and labelled the protein, and collected and analysed data. N.R.G. and S.M.B. discussed the data and co-wrote the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven M. Block.

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1-7 with Legends and a Supplementary Discussion. (PDF 2094 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guydosh, N., Block, S. Direct observation of the binding state of the kinesin head to the microtubule. Nature 461, 125–128 (2009). https://doi.org/10.1038/nature08259

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature08259

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing