Global electromagnetic induction constraints on transition-zone water content variations


Small amounts of water can significantly affect the physical properties of mantle materials, including lowering of the solidus1, and reducing effective viscosity2 and seismic velocity3. The amount and distribution of water within the mantle thus has profound implications for the dynamics and geochemical evolution of the Earth4,5. Electrical conductivity is also highly sensitive to the presence of hydrogen in mantle minerals6. The mantle transition zone minerals wadsleyite and ringwoodite in particular have high water solubility4, and recent high pressure experiments show that the electrical conductivity of these minerals is very sensitive to water content7,8,9. Thus estimates of the electrical conductivity of the mantle transition zone derived from electromagnetic induction studies have the potential to constrain the water content of this region. Here we invert long period geomagnetic response functions to derive a global-scale three-dimensional model of electrical conductivity variations in the Earth’s mantle, revealing variations in the electrical conductivity of the transition zone of approximately one order of magnitude. Conductivities are high in cold, seismically fast, areas where slabs have subducted into or through the transition zone. Significant variations in water content throughout the transition zone provide a plausible explanation for the observed patterns. Our results support the view10,11 that at least some of the water in the transition zone has been carried into that region by cold subducting slabs.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Regularized degree and order nine electrical conductivity inverse solution.
Figure 2: Global and regional electrical conductivity profiles, based on the three-dimensional inverse solution presented in Fig. 1 .


  1. 1

    Hirth, G. & Kohlstedt, D. L. Water in the oceanic upper mantle: implications for rheology, melt extraction and the evolution of the lithosphere. Earth Planet. Sci. Lett. 144, 93–108 (1996)

  2. 2

    Dixon, J. E., Dixon, T. H., Bell, D. R. & Malservisi, R. Lateral variation in upper mantle viscosity: role of water. Earth Planet. Sci. Lett. 222, 451–467 (2004)

  3. 3

    Karato, S.-I. & Jung, H. Water, partial melting and the origin of the seismic low velocity and high attenuation zone in the upper mantle. Earth Planet. Sci. Lett. 157, 193–207 (1998)

  4. 4

    Williams, Q. & Hemley, R. J. Hydrogen in the deep Earth. Annu. Rev. Earth Planet. Sci. 29, 365–418 (2001)

  5. 5

    Bercovici, D. & Karato, S.-i. Whole-mantle convection and the transition-zone water filter. Nature 425, 39–44 (2003)

  6. 6

    Karato, S. The role of hydrogen in the electrical conductivity of the upper mantle. Nature 347, 272–273 (1990)

  7. 7

    Huang, X., Xu, Y. & Karato, S.-i. Water content in the transition zone from electrical conductivity of wadsleyite and ringwoodite. Nature 434, 746–749 (2005)

  8. 8

    Yoshino, T., Manthilake, G., Matsuzaki, T. & Katsura, T. Dry mantle transition zone inferred from the conductivity of wadsleyite and ringwoodite. Nature 451, 326–329 (2008)

  9. 9

    Karato, S. & Dai, L. Comments on “Electrical conductivity of wadsleyite as a function of temperature and water content” by Manthilake et al . Phys. Earth Planet. Inter. (in the press)

  10. 10

    Ohtani, E., Litasov, K., Hosoya, T., Kubo, T. & Kondo, T. Water transport into the deep mantle and formation of a hydrous transition zone. Phys. Earth Planet. Inter. 143, 255–269 (2004)

  11. 11

    Kawakatsu, H. & Watada, S. Seismic evidence for deep-water transportation in the mantle. Science 316, 1468–1471 (2007)

  12. 12

    Kelbert, A., Egbert, G. D. & Schultz, A. Non-linear conjugate gradient inversion for global EM induction: resolution studies. Geophys. J. Int. 173, 365–381 (2008)

  13. 13

    Hae, R., Ohtani, E., Kubo, T., Koyama, T. & Utada, H. Hydrogen diffusivity in wadsleyite and water distribution in the mantle transition zone. Earth Planet. Sci. Lett. 243, 141–148 (2006)

  14. 14

    Toffelmier, D. A. & Tyburczy, J. A. Electromagnetic detection of a 410-km-deep melt layer in the southwestern United States. Nature 447, 991–994 (2007)

  15. 15

    Booker, J. R., Favetto, A. & Pomposiello, M. C. Low electrical resistivity associated with plunging of the Nazca flat slab beneath Argentina. Nature 429, 399–403 (2004)

  16. 16

    Fukao, Y., Koyama, T., Obayashi, M. & Utada, H. Trans-Pacific temperature field in the mantle transition region derived from seismic and electromagnetic tomography. Earth Planet. Sci. Lett. 217, 425–434 (2004)

  17. 17

    Koyama, T. et al. Water Content in the Mantle Transition Zone Beneath the North Pacific Derived from the Electrical Conductivity Anomaly 171–179 (AGU Geophys. Monograph Series 168, 2006)

  18. 18

    Schultz, A. & Pritchard, G. in Three Dimensional Electromagnetics (eds Spies, B. & Oristaglio, V.) 451–476 (Society of Exploration Geophysicists, 1999)

  19. 19

    Kuvshinov, A. & Olsen, N. A global model of mantle conductivity derived from 5 years of CHAMP, Ørsted, and SAC-C magnetic data. Geophys. Res. Lett. 33 18301 10.1029/2006GL027083 (2006)

  20. 20

    Fujii, I. & Schultz, A. The 3D electromagnetic response of the Earth to ring current and auroral oval excitation. Geophys. J. Int. 151, 689–709 (2002)

  21. 21

    Schultz, A. & Larsen, J. C. On the electrical conductivity of the mid-mantle. 1. Calculation of equivalent scalar magnetotelluric response functions. Geophys. J. Int. 88, 733–761 (1987)

  22. 22

    Fukao, Y., Widiyantoro, S. & Obayashi, M. Stagnant slabs in the upper and lower mantle transition region. Rev. Geophys. 39, 291–324 (2001)

  23. 23

    Lawrence, J. F. & Shearer, P. M. Imaging mantle transition zone thickness with SdS-SS finite-frequency sensitivity kernels. Geophys. J. Int. 174, 143–158 (2008)

  24. 24

    Dasgupta, R., Hirschmann, M. M. & Withers, A. C. Deep global cycling of carbon constrained by the solidus of anhydrous, carbonated eclogite under upper mantle conditions. Earth Planet. Sci. Lett. 227, 73–85 (2004)

  25. 25

    Yoshino, T. & Katsura, T. Effect of iron content on electrical conductivity of ringwoodite, with implications for electrical structure in the transition zone. Phys. Earth Planet. Inter. (in the press)

  26. 26

    Maruyama, S. & Okamoto, K. Water transportation from the subducting slab into the mantle transition zone. Gondwana Res. 11, 148–165 (2007)

  27. 27

    INTERMAGNET. Participating observatories (map). 〈

  28. 28

    Olsen, N. et al. CHAOS — a model of the Earth's magnetic field derived from CHAMP, Ørsted, and SAC-C magnetic satellite data. Geophys. J. Int. 166, 67–75 (2006)

  29. 29

    Uyeshima, M. & Schultz, A. Geomagnetic induction in a heterogeneous sphere: a new three-dimensional forward solver using a conservative staggered-grid finite difference method. Geophys. J. Int. 140, 636–650 (2000)

  30. 30

    Kuvshinov, A. V., Olsen, N., Avdeev, D. B. & Pankratov, O. V. Electromagnetic induction in the oceans and the anomalous behaviour of coastal C-responses for periods up to 20 days. Geophys. Res. Lett. 29 1595 10.1029/2001GL014409 (2002)

  31. 31

    Evans, R. L. et al. Geophysical evidence from the MELT area for compositional controls on oceanic plates. Nature 437, 249–252 (2005)

  32. 32

    Lizarralde, D., Chave, A., Hirth, G. & Schultz, A. Northeastern Pacific mantle conductivity profile from long-period magnetotelluric sounding using Hawaii-to-California submarine cable data. J. Geophys. Res. 100 (B9). 17837–17854 (1995)

  33. 33

    Neal, S. L., Mackie, R. L., Larsen, J. C. & Schultz, A. Variations in the electrical conductivity of the upper mantle beneath North America and the Pacific Ocean. J. Geophys. Res. 105 (B4). 8229–8242 (2000)

  34. 34

    Schultz, A., Kurtz, R. D., Chave, A. D. & Jones, A. G. Conductivity discontinuities in the upper-mantle beneath a stable craton. Geophys. Res. Lett. 20, 2941–2944 (1993)

  35. 35

    Egbert, G. D. & Booker, J. R. Very long period magnetotellurics at Tucson observatory — implications for mantle conductivity. J. Geophys. Res. 97, 15099–15112 (1992)

  36. 36

    Ichiki, M. et al. Upper mantle conductivity structure of the back-arc region beneath northeastern China. Geophys. Res. Lett. 28, 3773–3776 (2001)

  37. 37

    Utada, H., Koyama, T., Shimizu, H. & Chave, A. D. A. Semi-global reference model for electrical conductivity in the mid-mantle beneath the north Pacific region. Geophys. Res. Lett. 30, 1194–1197 (2003)

  38. 38

    Kuvshinov, A., Utada, H., Avdeev, D. & Koyama, T. 3-D modelling and analysis of Dst C-responses in the North Pacific Ocean region, revisited. Geophys. J. Int. 160, 505–526 (2005)

  39. 39

    Olsen, N. The electrical conductivity of the mantle beneath Europe derived from C-responses from 3 to 720 hr. Geophys. J. Int. 133, 298–308 (1998)

  40. 40

    Tarits, P., Hautot, S. & Perrier, F. Water in the mantle: results from electrical conductivity beneath the French Alps. Geophys. Res. Lett. 31 6612 10.1029/2003GL019277 (2004)

  41. 41

    Semenov, V. Y. & Jozwiak, W. Lateral variations of the mid-mantle conductance beneath Europe. Tectonophysics 416, 279–288 (2006)

  42. 42

    Goes, S., Spakman, W. & Bijwaard, H. A lower mantle source for central European volcanism. Science 286, 1928–1931 (1999)

  43. 43

    Gaillard, F., Malki, M., Iacono-Marziano, G., Pichavant, M. & Scaillet, B. Carbonatite melts and electrical conductivity in the asthenosphere. Science 322, 1363–1365 (2008)

  44. 44

    Hammouda, T. High-pressure melting of carbonated eclogite and experimental constraints on carbon recycling and storage in the mantle. Earth Planet. Sci. Lett. 214, 357–368 (2003)

Download references


We acknowledge support from the US National Science Foundation (grant number EAR-0739111) and from the US National Aeronautics and Space Administration (grant number NNX08AG04G). A. Kuvshinov is thanked for help with the near-surface data correction.

Author Contributions A.S. provided the original forward solver and the data sets. The methods were developed jointly by G.E. and A.K. A.K. implemented the inversion and performed all computational experiments. All authors were involved in the interpretation of the results and creation of this manuscript.

Author information

Correspondence to Anna Kelbert.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kelbert, A., Schultz, A. & Egbert, G. Global electromagnetic induction constraints on transition-zone water content variations. Nature 460, 1003–1006 (2009).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.