Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

An epistatic ratchet constrains the direction of glucocorticoid receptor evolution


The extent to which evolution is reversible has long fascinated biologists1,2,3,4,5,6,7,8. Most previous work on the reversibility of morphological and life-history evolution9,10,11,12,13 has been indecisive, because of uncertainty and bias in the methods used to infer ancestral states for such characters14,15. Further, despite theoretical work on the factors that could contribute to irreversibility1,8,16, there is little empirical evidence on its causes, because sufficient understanding of the mechanistic basis for the evolution of new or ancestral phenotypes is seldom available3,8,17. By studying the reversibility of evolutionary changes in protein structure and function, these limitations can be overcome. Here we show, using the evolution of hormone specificity in the vertebrate glucocorticoid receptor as a case-study, that the evolutionary path by which this protein acquired its new function soon became inaccessible to reverse exploration. Using ancestral gene reconstruction, protein engineering and X-ray crystallography, we demonstrate that five subsequent ‘restrictive’ mutations, which optimized the new specificity of the glucocorticoid receptor, also destabilized elements of the protein structure that were required to support the ancestral conformation. Unless these ratchet-like epistatic substitutions are restored to their ancestral states, reversing the key function-switching mutations yields a non-functional protein. Reversing the restrictive substitutions first, however, does nothing to enhance the ancestral function. Our findings indicate that even if selection for the ancestral function were imposed, direct reversal would be extremely unlikely, suggesting an important role for historical contingency in protein evolution.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Evolution and reversibility of glucocorticoid receptor function.
Figure 2: Identification of restrictive substitutions that impede reversibility.
Figure 3: Restrictive substitutions impede evolutionary reversibility.
Figure 4: Epistasis limits trajectories of reverse and forward evolution.

Accession codes

Primary accessions

Protein Data Bank

Data deposits

The atomic coordinates and structure factors for AncGR2 have been submitted to the Protein Data Bank (PDB) under accession number 3GN8.


  1. Muller, H. J. Reversibility in evolution considered from the standpoint of genetics. Biol. Rev. Camb. Philos. Soc. 14, 261–280 (1939)

    Article  Google Scholar 

  2. Simpson, G. G. The Major Features of Evolution 310–312 (Columbia Univ. Press, 1953)

    Book  Google Scholar 

  3. Crick, F. H. The origin of the genetic code. J. Mol. Biol. 38, 367–379 (1968)

    CAS  Article  Google Scholar 

  4. Gould, S. J. Dollo on Dollo’s law: irreversibility and the status of evolutionary laws. J. Hist. Biol. 3, 189–212 (1970)

    CAS  Article  Google Scholar 

  5. Dobzhansky, T. G. Genetics of the Evolutionary Process 428–430 (Columbia Univ. Press, 1971)

    Google Scholar 

  6. Macbeth, N. Reflections on irreversibility. Syst. Zool. 29, 402–404 (1980)

    Article  Google Scholar 

  7. Bull, J. J. & Charnov, E. L. On irreversible evolution. Evolution 39, 1149–1155 (1985)

    CAS  Article  Google Scholar 

  8. Teotonio, H. & Rose, M. R. Perspective: reverse evolution. Evolution 55, 653–660 (2001)

    CAS  Article  Google Scholar 

  9. Collin, R. & Cipriani, R. Dollo’s law and the re-evolution of shell coiling. Proc. R. Soc. Lond. B. 270, 2551–2555 (2003)

    Article  Google Scholar 

  10. Domes, K., Norton, R. A., Maraun, M. & Scheu, S. Reevolution of sexuality breaks Dollo’s law. Proc. Natl Acad. Sci. USA 104, 7139–7144 (2007)

    ADS  CAS  Article  Google Scholar 

  11. Kohlsdorf, T. & Wagner, G. P. Evidence for the reversibility of digit loss: a phylogenetic study of limb evolution in Bachia (Gymnophthalmidae: Squamata). Evolution 60, 1896–1912 (2006)

    Article  Google Scholar 

  12. Whiting, M. F., Bradler, S. & Maxwell, T. Loss and recovery of wings in stick insects. Nature 421, 264–267 (2003)

    ADS  CAS  Article  Google Scholar 

  13. Chippindale, P. T., Bonett, R. M., Baldwin, A. S. & Wiens, J. J. Phylogenetic evidence for a major reversal of life-history evolution in plethodontid salamanders. Evolution 58, 2809–2822 (2004)

    CAS  Article  Google Scholar 

  14. Goldberg, E. E. & Igic, B. On phylogenetic tests of irreversible evolution. Evolution 62, 2727–2741 (2008)

    Article  Google Scholar 

  15. Collin, R. & Miglietta, M. P. Reversing opinions on Dollo’s Law. Trends Ecol. Evol. 23, 602–609 (2008)

    Article  Google Scholar 

  16. Wagner, G. P. The logical structure of irreversible systems transformations: a theorem concerning Dollo’s law and chaotic movement. J. Theor. Biol. 96, 337–346 (1982)

    MathSciNet  CAS  Article  Google Scholar 

  17. Zufall, R. A. & Rausher, M. D. Genetic changes associated with floral adaptation restrict future evolutionary potential. Nature 428, 847–850 (2004)

    ADS  CAS  Article  Google Scholar 

  18. Lewontin, R. C. Is nature probable or capricious? Bioscience 16, 25–27 (1966)

    Article  Google Scholar 

  19. Pagel, M. Limpets break Dollo’s Law. Trends Ecol. Evol. 19, 278–280 (2004)

    Article  Google Scholar 

  20. Thornton, J. W. Resurrecting ancient genes: experimental analysis of extinct molecules. Nature Rev. Genet. 5, 366–375 (2004)

    CAS  Article  Google Scholar 

  21. Dean, A. M. & Thornton, J. W. Mechanistic approaches to the study of evolution: the functional synthesis. Nature Rev. Genet. 8, 675–688 (2007)

    CAS  Article  Google Scholar 

  22. Yokoyama, S., Tada, T., Zhang, H. & Britt, L. Elucidation of phenotypic adaptations: molecular analyses of dim-light vision proteins in vertebrates. Proc. Natl Acad. Sci. USA 105, 13480–13485 (2008)

    ADS  CAS  Article  Google Scholar 

  23. Bridgham, J. T., Carroll, S. M. & Thornton, J. W. Evolution of hormone-receptor complexity by molecular exploitation. Science 312, 97–101 (2006)

    ADS  CAS  Article  Google Scholar 

  24. Ortlund, E. A., Bridgham, J. T., Redinbo, M. R. & Thornton, J. W. Crystal structure of an ancient protein: evolution by conformational epistasis. Science 317, 1544–1548 (2007)

    ADS  CAS  Article  Google Scholar 

  25. Wurtz, J. M. et al. A canonical structure for the ligand-binding domain of nuclear receptors. Nature Struct. Biol. 3, 87–94 (1996)

    CAS  Article  Google Scholar 

  26. Smith, J. M. Natural selection and the concept of a protein space. Nature 225, 563–564 (1970)

    ADS  CAS  Article  Google Scholar 

  27. Majerus, M. E. N. Melanism: Evolution in Action 151–154 (Oxford Univ. Press, 1998)

    Google Scholar 

  28. Dawkins, R. Blind Watchmaker (W.W. Norton, 1994)

    Google Scholar 

  29. Weinreich, D. M., Delaney, N. F., Depristo, M. A. & Hartl, D. L. Darwinian evolution can follow only very few mutational paths to fitter proteins. Science 312, 111–114 (2006)

    ADS  CAS  Article  Google Scholar 

  30. Dennett, D. C. Darwin’s Dangerous Idea: Evolution and the Meanings of Life (Simon & Schuster, 1995)

    Google Scholar 

  31. Yang, Z., Kumar, S. & Nei, M. A new method of inference of ancestral nucleotide and amino acid sequences. Genetics 141, 1641–1650 (1995)

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997)

    CAS  Article  Google Scholar 

  33. McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007)

    CAS  Article  Google Scholar 

  34. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. 60, 2126–2132 (2004)

    Google Scholar 

  35. Brunger, A. T. et al. Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998)

    CAS  Article  Google Scholar 

Download references


Supported by National Science Foundation IOB-0546906, National Institutes of Health R01-GM081592 and F32-GM074398, and a Sloan Foundation Fellowship to J.W.T. We thank M. Harms and members of the Thornton, Cresko and Phillips laboratories for comments.

Author Contributions J.T.B. and J.W.T. conceived the experiments. J.T.B. performed the functional experiments, E.A.O. the structural analysis, and J.W.T. the phylogenetic analysis. J.T.B., E.A.O. and J.W.T. interpreted the results. J.T.B. and J.T. wrote the paper.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Joseph W. Thornton.

Supplementary information

Supplementary Information

This file contains Supplementary Table 1, Supplementary References and Supplementary Figure S1-S5. (PDF 4555 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bridgham, J., Ortlund, E. & Thornton, J. An epistatic ratchet constrains the direction of glucocorticoid receptor evolution. Nature 461, 515–519 (2009).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing