Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Developmental and species-divergent globin switching are driven by BCL11A

Abstract

The contribution of changes in cis-regulatory elements or trans-acting factors to interspecies differences in gene expression is not well understood. The mammalian β-globin loci have served as a model for gene regulation during development. Transgenic mice containing the human β-globin locus, consisting of the linked embryonic (ε), fetal (γ) and adult (β) genes, have been used as a system to investigate the temporal switch from fetal to adult haemoglobin, as occurs in humans. Here we show that the human γ-globin (HBG) genes in these mice behave as murine embryonic globin genes, revealing a limitation of the model and demonstrating that critical differences in the trans-acting milieu have arisen during mammalian evolution. We show that the expression of BCL11A, a repressor of human γ-globin expression identified by genome-wide association studies, differs between mouse and human. Developmental silencing of the mouse embryonic globin and human γ-globin genes fails to occur in mice in the absence of BCL11A. Thus, BCL11A is a critical mediator of species-divergent globin switching. By comparing the ontogeny of β-globin gene regulation in mice and humans, we have shown that alterations in the expression of a trans-acting factor constitute a critical driver of gene expression changes during evolution.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Human γ-globin is primarily expressed in primitive erythroid cells of β-locus mice.
Figure 2: PT-FISH analysis shows that γ-globin expression parallels the murine embryonic globins in primitive erythroid cells.
Figure 3: BCL11A expression varies between humans and mice, suggesting a model for trans -acting variation in β-globin gene expression.
Figure 4: Bcl11a -/- mice fail to silence the expression of mouse embryonic β-like globins and human γ-globin genes.

References

  1. 1

    Carroll, S. B. Evo-devo and an expanding evolutionary synthesis: a genetic theory of morphological evolution. Cell 134, 25–36 (2008)

    CAS  Article  Google Scholar 

  2. 2

    Hoekstra, H. E. & Coyne, J. A. The locus of evolution: evo devo and the genetics of adaptation. Evolution 61, 995–1016 (2007)

    Article  Google Scholar 

  3. 3

    Wallace, H. A. et al. Manipulating the mouse genome to engineer precise functional syntenic replacements with human sequence. Cell 128, 197–209 (2007)

    CAS  Article  Google Scholar 

  4. 4

    Wilson, M. D. et al. Species-specific transcription in mice carrying human chromosome 21. Science 322, 434–438 (2008)

    ADS  CAS  Article  Google Scholar 

  5. 5

    McGrath, K. & Palis, J. Ontogeny of erythropoiesis in the mammalian embryo. Curr. Top. Dev. Biol. 82, 1–22 (2008)

    CAS  Article  Google Scholar 

  6. 6

    Wijgerde, M., Grosveld, F. & Fraser, P. Transcription complex stability and chromatin dynamics in vivo . Nature 377, 209–213 (1995)

    ADS  CAS  Article  Google Scholar 

  7. 7

    Peterson, K. R., Navas, P. A., Li, Q. & Stamatoyannopoulos, G. LCR-dependent gene expression in β-globin YAC transgenics: detailed structural studies validate functional analysis even in the presence of fragmented YACs. Hum. Mol. Genet. 7, 2079–2088 (1998)

    CAS  Article  Google Scholar 

  8. 8

    Porcu, S. et al. The human β globin locus introduced by YAC transfer exhibits a specific and reproducible pattern of developmental regulation in transgenic mice. Blood 90, 4602–4609 (1997)

    CAS  PubMed  Google Scholar 

  9. 9

    Peschle, C. et al. Haemoglobin switching in human embryos: asynchrony of ζ→α and ε→γ-globin switches in primitive and definite erythropoietic lineage. Nature 313, 235–238 (1985)

    ADS  CAS  Article  Google Scholar 

  10. 10

    Sloane-Stanley, J., Roberts, N. A., Olivieri, N., Weatherall, D. J. & Wood, W. G. Globin gene expression in Hb Lepore-BAC transgenic mice. Br. J. Haematol. 135, 735–737 (2006)

    CAS  Article  Google Scholar 

  11. 11

    Pace, B., Li, Q., Peterson, K. & Stamatoyannopoulos, G. α-Amino butyric acid cannot reactivate the silenced γ gene of the β locus YAC transgenic mouse. Blood 84, 4344–4353 (1994)

    CAS  PubMed  Google Scholar 

  12. 12

    Papayannopoulou, T., Torrealba de Ron, A., Veith, R., Knitter, G. & Stamatoyannopoulos, G. Arabinosylcytosine induces fetal hemoglobin in baboons by perturbing erythroid cell differentiation kinetics. Science 224, 617–619 (1984)

    ADS  CAS  Article  Google Scholar 

  13. 13

    Weatherall, D. J. et al. Foetal erythropoiesis in human leukaemia. Nature 257, 710–712 (1975)

    ADS  CAS  Article  Google Scholar 

  14. 14

    Kingsley, P. D. et al. “Maturational” globin switching in primary primitive erythroid cells. Blood 107, 1665–1672 (2006)

    CAS  Article  Google Scholar 

  15. 15

    Fraser, S. T., Isern, J. & Baron, M. H. Maturation and enucleation of primitive erythroblasts during mouse embryogenesis is accompanied by changes in cell-surface antigen expression. Blood 109, 343–352 (2007)

    CAS  Article  Google Scholar 

  16. 16

    Ragoczy, T., Bender, M. A., Telling, A., Byron, R. & Groudine, M. The locus control region is required for association of the murine β-globin locus with engaged transcription factories during erythroid maturation. Genes Dev. 20, 1447–1457 (2006)

    CAS  Article  Google Scholar 

  17. 17

    Trimborn, T., Gribnau, J., Grosveld, F. & Fraser, P. Mechanisms of developmental control of transcription in the murine α- and β-globin loci. Genes Dev. 13, 112–124 (1999)

    CAS  Article  Google Scholar 

  18. 18

    Chada, K., Magram, J. & Costantini, F. An embryonic pattern of expression of a human fetal globin gene in transgenic mice. Nature 319, 685–689 (1986)

    ADS  CAS  Article  Google Scholar 

  19. 19

    Uda, M. et al. Genome-wide association study shows BCL11A associated with persistent fetal hemoglobin and amelioration of the phenotype of β-thalassemia. Proc. Natl Acad. Sci. USA 105, 1620–1625 (2008)

    ADS  CAS  Article  Google Scholar 

  20. 20

    Lettre, G. et al. DNA polymorphisms at the BCL11A, HBS1L-MYB, and β-globin loci associate with fetal hemoglobin levels and pain crises in sickle cell disease. Proc. Natl Acad. Sci. USA 105, 11869–11874 (2008)

    ADS  CAS  Article  Google Scholar 

  21. 21

    Menzel, S. et al. A QTL influencing F cell production maps to a gene encoding a zinc-finger protein on chromosome 2p15. Nature Genet. 39, 1197–1199 (2007)

    CAS  Article  Google Scholar 

  22. 22

    Sedgewick, A. E. et al. BCL11A is a major HbF quantitative trait locus in three different populations with β-hemoglobinopathies. Blood Cells Mol. Dis. 41, 255–258 (2008)

    CAS  Article  Google Scholar 

  23. 23

    Sankaran, V. G. et al. Human fetal hemoglobin expression is regulated by the developmental stage-specific repressor BCL11A . Science 322, 1839–1842 (2008)

    ADS  CAS  Article  Google Scholar 

  24. 24

    Liu, P. et al. Bcl11a is essential for normal lymphoid development. Nature Immunol. 4, 525–532 (2003)

    CAS  Article  Google Scholar 

  25. 25

    Sankaran, V. G., Orkin, S. H. & Walkley, C. R. Rb intrinsically promotes erythropoiesis by coupling cell cycle exit with mitochondrial biogenesis. Genes Dev. 22, 463–475 (2008)

    CAS  Article  Google Scholar 

  26. 26

    Zhang, J., Socolovsky, M., Gross, A. W. & Lodish, H. F. Role of Ras signaling in erythroid differentiation of mouse fetal liver cells: functional analysis by a flow cytometry-based novel culture system. Blood 102, 3938–3946 (2003)

    CAS  Article  Google Scholar 

  27. 27

    Johnson, R. M. et al. Phylogenetic comparisons suggest that distance from the locus control region guides developmental expression of primate β-type globin genes. Proc. Natl Acad. Sci. USA 103, 3186–3191 (2006)

    ADS  CAS  Article  Google Scholar 

  28. 28

    Peterson, K. R. et al. Transgenic mice containing a 248-kb yeast artificial chromosome carrying the human β-globin locus display proper developmental control of human globin genes. Proc. Natl Acad. Sci. USA 90, 7593–7597 (1993)

    ADS  CAS  Article  Google Scholar 

  29. 29

    Harju, S., Navas, P. A., Stamatoyannopoulos, G. & Peterson, K. R. Genome architecture of the human β-globin locus affects developmental regulation of gene expression. Mol. Cell. Biol. 25, 8765–8778 (2005)

    CAS  Article  Google Scholar 

  30. 30

    Gaensler, K. M., Kitamura, M. & Kan, Y. W. Germ-line transmission and developmental regulation of a 150-kb yeast artificial chromosome containing the human β-globin locus in transgenic mice. Proc. Natl Acad. Sci. USA 90, 11381–11385 (1993)

    ADS  CAS  Article  Google Scholar 

  31. 31

    Strouboulis, J., Dillon, N. & Grosveld, F. Developmental regulation of a complete 70-kb human β-globin locus in transgenic mice. Genes Dev. 6, 1857–1864 (1992)

    CAS  Article  Google Scholar 

  32. 32

    Chan, I. T. et al. Conditional expression of oncogenic K-ras from its endogenous promoter induces a myeloproliferative disease. J. Clin. Invest. 113, 528–538 (2004)

    CAS  Article  Google Scholar 

  33. 33

    Braun, B. S. et al. Somatic activation of oncogenic Kras in hematopoietic cells initiates a rapidly fatal myeloproliferative disorder. Proc. Natl Acad. Sci. USA 101, 597–602 (2004)

    ADS  CAS  Article  Google Scholar 

  34. 34

    Garrick, D. et al. Loss of Atrx affects trophoblast development and the pattern of X-inactivation in extraembryonic tissues. PLoS Genet. 2, e58 (2006)

    Article  Google Scholar 

  35. 35

    Jasinski, M., Keller, P., Fujiwara, Y., Orkin, S. H. & Bessler, M. GATA1-Cre mediates Piga gene inactivation in the erythroid/megakaryocytic lineage and leads to circulating red cells with a partial deficiency in glycosyl phosphatidylinositol-linked proteins (paroxysmal nocturnal hemoglobinuria type II cells). Blood 98, 2248–2255 (2001)

    CAS  Article  Google Scholar 

  36. 36

    Walkley, C. R., Fero, M. L., Chien, W. M., Purton, L. E. & McArthur, G. A. Negative cell-cycle regulators cooperatively control self-renewal and differentiation of haematopoietic stem cells. Nature Cell Biol. 7, 172–178 (2005)

    CAS  Article  Google Scholar 

  37. 37

    Choi, J. W., Kim, Y., Fujino, M. & Ito, M. A new anti-hemoglobin F antibody against synthetic peptides for the detection of F-cell precursors (F-blasts) in bone marrow. Int. J. Hematol. 74, 277–280 (2001)

    CAS  Article  Google Scholar 

  38. 38

    Bolland, D. J. et al. Antisense intergenic transcription in V(D)J recombination. Nature Immunol. 5, 630–637 (2004)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We are grateful to K. Peterson and H. Fedosyuk for providing β-locus mice, K. Gaensler for the A20 and A85 strains of β-locus mice, and T. Jacks for providing the K-RasG12D mice. We thank J. Palis and P. Kingsley for providing mouse embryonic globin antibodies, H. Mikkola and B. Van Handel for providing sorted human samples, and R. Byron and A. Telling for technical support. We thank L. Zon, K. McGrath, P. Kingsley, J. Palis, M. Kowalczyk and T. Menne for advice and discussions. This work was supported by funding from the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) and the National Heart, Lung, and Blood Institute (NHLBI) of the National Institutes of Health (NIH) (S.H.O. and M.G.) and the National Cancer Institute (P.W.T.). S.H.O. is an Investigator of the Howard Hughes Medical Institute (HHMI). C.R.W. is a special fellow of the Leukemia & Lymphoma Society. T.R. is supported by a fellowship from the American Society of Hematology. J.X. is an HHMI fellow of the Helen Hay Whitney Foundation. V.G.S. is supported by a Medical Scientist Training Program Award from the NIH and G.C.I. is supported by a NCI postdoctoral fellowship.

Author Contributions V.G.S., J.X. and S.H.O. conceived the study design. V.G.S., J.X., T.R., C.R.W., Y.F., M.I. and M.A.B. performed the experiments. V.G.S., J.X., T.R., C.R.W., M.G., M.A.B. and S.H.O. analysed data. G.C.I., S.D.M. and P.W.T. developed and contributed a new mouse line. V.G.S., J.X. and S.H.O. wrote the paper. All authors read, helped revise, and approved the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Stuart H. Orkin.

Ethics declarations

Competing interests

V.G.S. and S.H.O. are inventors on a patent filed by the Children’s Hospital of Boston related to the therapeutic targeting of BCL11A for induction of fetal haemoglobin in humans.

Supplementary information

Supplementary Information

This file contains Supplementary Notes, Supplementary References and Supplementary Figures 1-10 with Legends. (PDF 4340 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sankaran, V., Xu, J., Ragoczy, T. et al. Developmental and species-divergent globin switching are driven by BCL11A. Nature 460, 1093–1097 (2009). https://doi.org/10.1038/nature08243

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing