Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A tunable topological insulator in the spin helical Dirac transport regime


Helical Dirac fermions—charge carriers that behave as massless relativistic particles with an intrinsic angular momentum (spin) locked to its translational momentum—are proposed to be the key to realizing fundamentally new phenomena in condensed matter physics1,2,3,4,5,6,7,8,9. Prominent examples include the anomalous quantization of magneto-electric coupling4,5,6, half-fermion states that are their own antiparticle7,8, and charge fractionalization in a Bose–Einstein condensate9, all of which are not possible with conventional Dirac fermions of the graphene variety10. Helical Dirac fermions have so far remained elusive owing to the lack of necessary spin-sensitive measurements and because such fermions are forbidden to exist in conventional materials harbouring relativistic electrons, such as graphene10 or bismuth11. It has recently been proposed that helical Dirac fermions may exist at the edges of certain types of topologically ordered insulators3,4,12—materials with a bulk insulating gap of spin–orbit origin and surface states protected against scattering by time-reversal symmetry—and that their peculiar properties may be accessed provided the insulator is tuned into the so-called topological transport regime3,4,5,6,7,8,9. However, helical Dirac fermions have not been observed in existing topological insulators13,14,15,16,17,18. Here we report the realization and characterization of a tunable topological insulator in a bismuth-based class of material by combining spin-imaging and momentum-resolved spectroscopies, bulk charge compensation, Hall transport measurements and surface quantum control. Our results reveal a spin-momentum locked Dirac cone carrying a non-trivial Berry’s phase that is nearly 100 per cent spin-polarized, which exhibits a tunable topological fermion density in the vicinity of the Kramers point and can be driven to the long-sought topological spin transport regime. The observed topological nodal state is shown to be protected even up to 300 K. Our demonstration of room-temperature topological order and non-trivial spin-texture in stoichiometric Bi2Se3.M x (M x indicates surface doping or gating control) paves the way for future graphene-like studies of topological insulators, and applications of the observed spin-polarized edge channels in spintronic and computing technologies possibly at room temperature.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Detection of spin-momentum locking of spin-helical Dirac electrons in Bi 2 Se 3 and Bi 2 Te 3 using spin-resolved ARPES.
Figure 2: Tuning the bulk Fermi level through systematic bulk charge compensation monitored through systematic transport and ARPES measurements.
Figure 3: Tuning the density of helical Dirac electrons to the spin-degenerate Kramers point and topological transport regime.
Figure 4: Topological order of the nodal helical Dirac ground state at 300K.

Similar content being viewed by others


  1. Day, C. Exotic spin textures show up in diverse materials. Phys. Today 62, 12–13 (2009)

    CAS  Google Scholar 

  2. Moore, J. E. Topological insulators: the next generation. Nature Phys. 5, 378–380 (2009)

    Article  ADS  CAS  Google Scholar 

  3. Fu, L., Kane, C. L. & Mele, E. J. Topological insulators in three dimensions. Phys. Rev. Lett. 98, 106803 (2007)

    Article  ADS  Google Scholar 

  4. Qi, X.-L., Hughes, T. L. & Zhang, S.-C. Topological field theory of time-reversal invariant insulators. Phys. Rev. B 78, 195424 (2008)

    Article  ADS  Google Scholar 

  5. Schnyder, A. P. et al. Classification of topological insulators and superconductors. Phys. Rev. B 78, 195125 (2008)

    Article  ADS  Google Scholar 

  6. Essin, A., Moore, J. E. & Vanderbilt, D. Magnetoelectric polarizability and axion electrodynamics in crystalline insulators. Phys. Rev. Lett. 102, 146805 (2009)

    Article  ADS  Google Scholar 

  7. Fu, L. & Kane, C. L. Probing neutral Majorana fermion edge modes with charge transport. Phys. Rev. Lett. 102, 216403 (2009)

    Article  ADS  Google Scholar 

  8. Akhmerov, A. R., Nilsson, J. & Beenakker, C. W. J. Electrically detected interferometry of Majorana fermions in a topological insulator. Phys. Rev. Lett. 102, 216404 (2009)

    Article  ADS  CAS  Google Scholar 

  9. Seradjeh, B., Moore, J. E. & Franz, M. Exciton condensation and charge fractionalization in a topological insulator film. Preprint at 〈〉 (2009)

  10. Geim, A. K. & Novoselov, K. S. The rise of graphene. Nature Mater. 6, 183–191 (2007)

    Article  ADS  CAS  Google Scholar 

  11. Li, L. et al. Phase transitions of Dirac electrons in bismuth. Science 321, 547–550 (2008)

    Article  ADS  CAS  Google Scholar 

  12. Moore, J. E. & Balents, L. Topological invariants of time-reversal-invariant band structures. Phys. Rev. B 75, 121306(R) (2007)

    Article  ADS  Google Scholar 

  13. Hsieh, D. et al. A topological Dirac insulator in a quantum spin Hall phase. Nature 452, 970–974 (2008)

    Article  ADS  CAS  Google Scholar 

  14. Hsieh, D. et al. Observation of unconventional quantum spin textures in topological insulators. Science 323, 919–922 (2009)

    Article  ADS  CAS  Google Scholar 

  15. Xia, Y. et al. Observation of a large-gap topological-insulator class with a single Dirac cone on the surface. Nature Phys. 5, 398–402 (2009)

    Article  ADS  CAS  Google Scholar 

  16. Hor, Y. S. et al. p-type Bi2Se3 for topological insulator and low-temperature thermoelectric applications. Phys. Rev. B 79, 195208 (2009)

    Article  ADS  Google Scholar 

  17. Noh, H.-J. et al. Spin-orbit interaction effect in the electronic structure of Bi2Te3 observed by angle-resolved photoemission spectroscopy. Europhys. Lett. 81, 57006 (2008)

    Article  ADS  Google Scholar 

  18. Nishide, A. et al. Direct mapping of the spin-filtered surface bands of a three-dimensional quantum spin Hall insulator. Preprint at 〈〉 (2009)

  19. Checkelsky, J. G., Li, L. & Ong, N. P. Divergent resistance of the Dirac point in graphene: evidence for a transition in high magnetic field. Phys. Rev. B 79, 115434 (2009)

    Article  ADS  Google Scholar 

  20. Zhang, H. et al. Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nature Phys. 5, 438–442 (2009)

    Article  ADS  CAS  Google Scholar 

  21. Meier, F., Dil, J. H., Lobo-Checa, J., Patthey, L. & Osterwalder, J. Quantitative vectorial spin analysis in angle-resolved photoemission: Bi/Ag(111) and Pb/Ag(111). Phys. Rev. B 77, 165431 (2008)

    Article  ADS  Google Scholar 

  22. Larson, P. et al. Electronic structure of Bi2X3 (X = S, Se, T) compounds: comparison of theoretical calculations with photoemission studies. Phys. Rev. B 65, 085108 (2001)

    Article  ADS  Google Scholar 

  23. Mishra, S. K., Satpathy, S. & Jepsen, O. Electronic structure and thermoelectric properties of bismuth telluride and bismuth selenide. J. Phys. Condens. Matter 9, 461–470 (1997)

    Article  ADS  CAS  Google Scholar 

  24. Urazhdin, S. et al. Surface effects in layered semiconductors Bi2Se3 and Bi2Te3 . Phys. Rev. B 69, 085313 (2004)

    Article  ADS  Google Scholar 

  25. Black, J., Conwell, E. M., Seigle, L. & Spencer, C. W. Electrical and optical properties of some M2 V-BN3 VI-B semiconductors. J. Phys. Chem. Solids 2, 240–251 (1957)

    Article  ADS  CAS  Google Scholar 

  26. Thomas, G. A. et al. Large electron-density increase on cooling a layered metal: doped Bi2Te3 . Phys. Rev. B 46, 1553–1556 (1992)

    Article  CAS  Google Scholar 

  27. Zhou, S. et al. Metal to insulator transition in epitaxial graphene induced by molecular doping. Phys. Rev. Lett. 101, 086402 (2008)

    Article  ADS  CAS  Google Scholar 

  28. Schedin, F. et al. Detection of individual gas molecules adsorbed on graphene. Nature Mater. 6, 652–655 (2007)

    Article  ADS  CAS  Google Scholar 

  29. Konig, M. et al. Quantum spin Hall insulator state in HgTe quantum wells. Science 318, 766–770 (2007)

    Article  ADS  Google Scholar 

  30. Wilczek, F. Remarks on dyons. Phys. Rev. Lett. 48, 1146–1149 (1982)

    Article  ADS  CAS  Google Scholar 

  31. Hufner, S. Photoelectron Spectroscopy (Springer, 1995)

    Book  Google Scholar 

  32. Hoesch, M. Spin-polarized Fermi Surface Mapping. PhD thesis, Univ. Zurich. (2002)

    Book  Google Scholar 

  33. Blaha, P. et al. Computer Code WIEN2k (Vienna University of Technology, 2001)

    Google Scholar 

  34. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996)

    Article  ADS  CAS  Google Scholar 

  35. Wang, G. & Cagin, T. Electronic structure of the thermoelectric materials Bi2Te3 and Sb2Te3 from first-principles calculations. Phys. Rev. B 76, 075201 (2007)

    Article  ADS  Google Scholar 

Download references


We acknowledge the following people for discussions: P. W. Anderson, B. Altshuler, L. Balents, M. R. Beasley, B. A. Bernevig, C. Callan, J. C. Davis, H. Fertig, E. Fradkin, L. Fu, D. Gross, D. Haldane, K. Le Hur, B. I. Halperin, D. A. Huse, C. L. Kane, C. Kallin, E. A. Kim, R. B. Laughlin, D.-H. Lee, P. A. Lee, J. E. Moore, A. J. Millis, A. H. Castro Neto, J. Orenstein, P. Phillips, S. Sachdev, Dan C. Tsui, A. Vishwanath, F. Wilczek, X.-G. Wen and A. Yazdani. The spin-resolved and spin-integrated ARPES measurements using synchrotron X-ray facilities and theoretical computations are supported by the Basic Energy Sciences of the US Department of Energy (DE-FG-02-05ER46200, AC03-76SF00098 and DE-FG02-07ER46352) and by the Swiss Light Source, Paul Scherrer Institute. Materials growth and characterization are supported by the NSF through the Princeton Center for Complex Materials (DMR-0819860) and Princeton University. M.Z.H. acknowledges additional support from the A. P. Sloan Foundation, an R. H. Dicke fellowship research grant and the Kavli Institute of Theoretical Physics at Santa Barbara.

Author Contributions D.H., Y.X. and D.Q. contributed equally to the experiment with the assistance of L.W. and M.Z.H.; D.G., Y.S.H. and R.J.C. provided critically important high quality single crystal samples; J.G.C. and N.P.O. performed the transport measurements; J.H.D., F.M., J.O., L.P. and A.V.F. provided beamline assistance; H.L. and A.B. carried out the theoretical calculations; M.Z.H. conceived the design to reach the topological transport regime and was responsible for the overall project direction, planning, and integration among different research units.

Author information

Authors and Affiliations


Corresponding author

Correspondence to M. Z. Hasan.

Supplementary information

Supplementary Information

This file contains Supplementary Figures S1- S6 with Legends, Supplementary Data and Supplementary References. (PDF 1488 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hsieh, D., Xia, Y., Qian, D. et al. A tunable topological insulator in the spin helical Dirac transport regime. Nature 460, 1101–1105 (2009).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing