Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Specific pathways prevent duplication-mediated genome rearrangements

Abstract

We have investigated the ability of different regions of the left arm of Saccharomyces cerevisiae chromosome V to participate in the formation of gross chromosomal rearrangements (GCRs). We found that the 4.2-kilobase HXT13-DSF1 region sharing divergent homology with chromosomes IV, X and XIV, similar to mammalian segmental duplications, was ‘at risk’ for participating in duplication-mediated GCRs generated by homologous recombination. Numerous genes and pathways, including SGS1, TOP3, RMI1, SRS2, RAD6, SLX1, SLX4, SLX5, MSH2, MSH6, RAD10 and the DNA replication stress checkpoint requiring MRC1 and TOF1, were highly specific for suppressing these GCRs compared to GCRs mediated by single-copy sequences. These results indicate that the mechanisms for formation and suppression of rearrangements occurring in regions containing at-risk sequences differ from those occurring in regions of single-copy sequence. This explains how extensive genome instability is prevented in eukaryotic cells whose genomes contain numerous divergent repeated sequences.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: New assays for evaluating the genes that suppress the accumulation of GCRs.
Figure 2: Summary of the types of GCRs detected in the HXT13-DSF1 -region-mediated GCR assay.

Similar content being viewed by others

Accession codes

Primary accessions

ArrayExpress

Data deposits

Microarray data have been submitted to ArrayExpress (http://www.ebi.ac.uk/arrayexpress) with accession number E-TABM-714.

References

  1. Online Mendelian Inheritance in Man, OMIM. Institute of Genetic Medicine, Johns Hopkins University and National Center for Biotechnology Information, National Library of Medicine. 〈http://www.ncbi.nlm.nih.gov/omim/〉 (1999)

  2. Stankiewicz, P. & Lupski, J. R. The genomic basis of disease, mechanisms and assays for genomic disorders. Genome Dyn. 1, 1–16 (2006)

    CAS  PubMed  Google Scholar 

  3. Mitelman, F. Catalog of Chromosome Aberrations in Cancer (Wiley Liss, 1991)

    Google Scholar 

  4. Gorringe, K. L. et al. Evidence that both genetic instability and selection contribute to the accumulation of chromosome alterations in cancer. Carcinogenesis 26, 923–930 (2005)

    Article  CAS  PubMed  Google Scholar 

  5. Lengauer, C., Kinzler, K. W. & Vogelstein, B. Genetic instability in colorectal cancers. Nature 386, 623–627 (1997)

    Article  CAS  ADS  PubMed  Google Scholar 

  6. Ribas, M. et al. The structural nature of chromosomal instability in colon cancer cells. FASEB J. 17, 289–291 (2003)

    Article  CAS  PubMed  Google Scholar 

  7. Hoeijmakers, J. H. Genome maintenance mechanisms for preventing cancer. Nature 411, 366–374 (2001)

    Article  CAS  ADS  PubMed  Google Scholar 

  8. Deininger, P. L. & Batzer, M. A. Alu repeats and human disease. Mol. Genet. Metab. 67, 183–193 (1999)

    Article  CAS  PubMed  Google Scholar 

  9. Gordenin, D. A. & Resnick, M. A. Yeast ARMs (DNA at-risk motifs) can reveal sources of genome instability. Mutat. Res. 400, 45–58 (1998)

    Article  CAS  PubMed  Google Scholar 

  10. Batzer, M. A. & Deininger, P. L. Alu repeats and human genomic diversity. Nature Rev. Genet. 3, 370–379 (2002)

    Article  CAS  PubMed  Google Scholar 

  11. Ji, Y., Eichler, E. E., Schwartz, S. & Nicholls, R. D. Structure of chromosomal duplicons and their role in mediating human genomic disorders. Genome Res. 10, 597–610 (2000)

    Article  CAS  PubMed  Google Scholar 

  12. Harris, S., Rudnicki, K. S. & Haber, J. E. Gene conversions and crossing over during homologous and homeologous ectopic recombination in Saccharomyces cerevisiae . Genetics 135, 5–16 (1993)

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Umezu, K., Hiraoka, M., Mori, M. & Maki, H. Structural analysis of aberrant chromosomes that occur spontaneously in diploid Saccharomyces cerevisiae: retrotransposon Ty1 plays a crucial role in chromosomal rearrangements. Genetics 160, 97–110 (2002)

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Lemoine, F. J., Degtyareva, N. P., Lobachev, K. & Petes, T. D. Chromosomal translocations in yeast induced by low levels of DNA polymerase a model for chromosome fragile sites. Cell 120, 587–598 (2005)

    Article  CAS  PubMed  Google Scholar 

  15. Lobachev, K. S. et al. Inverted Alu repeats unstable in yeast are excluded from the human genome. EMBO J. 19, 3822–3830 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chen, C. & Kolodner, R. D. Gross chromosomal rearrangements in Saccharomyces cerevisiae replication and recombination defective mutants. Nature Genet. 23, 81–85 (1999)

    Article  CAS  PubMed  Google Scholar 

  17. Putnam, C. D., Pennaneach, V. & Kolodner, R. D. Saccharomyces cerevisiae as a model system to define the chromosomal instability phenotype. Mol. Cell. Biol. 25, 7226–7238 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Eichler, E. E. Recent duplication, domain accretion and the dynamic mutation of the human genome. Trends Genet. 17, 661–669 (2001)

    Article  CAS  PubMed  Google Scholar 

  19. Bosco, G. & Haber, J. E. Chromosome break-induced DNA replication leads to nonreciprocal translocations and telomere capture. Genetics 150, 1037–1047 (1998)

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Deem, A. et al. Defective break-induced replication leads to half-crossovers in Saccharomyces cerevisiae . Genetics 179, 1845–1860 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Boulton, S. J. & Jackson, S. P. Components of the Ku-dependent non-homologous end-joining pathway are involved in telomeric length maintenance and telomeric silencing. EMBO J. 17, 1819–1828 (1998)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Smith, C. E., Llorente, B. & Symington, L. S. Template switching during break-induced replication. Nature 447, 102–105 (2007)

    Article  CAS  ADS  PubMed  Google Scholar 

  23. Schmidt, K. H., Wu, J. & Kolodner, R. D. Control of translocations between highly diverged genes by Sgs1, the Saccharomyces cerevisiae homolog of the Bloom’s syndrome protein. Mol. Cell. Biol. 26, 5406–5420 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Oh, S. D. et al. BLM ortholog, Sgs1, prevents aberrant crossing-over by suppressing formation of multichromatid joint molecules. Cell 130, 259–272 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Myung, K., Chen, C. & Kolodner, R. D. Multiple pathways cooperate in the suppression of genome instability in Saccharomyces cerevisiae . Nature 411, 1073–1076 (2001)

    Article  CAS  ADS  PubMed  Google Scholar 

  26. Krogh, B. O. & Symington, L. S. Recombination proteins in yeast. Annu. Rev. Genet. 38, 233–271 (2004)

    Article  CAS  PubMed  Google Scholar 

  27. Bai, Y. & Symington, L. S. A. Rad52 homolog is required for RAD51-independent mitotic recombination in Saccharomyces cerevisiae . Genes Dev. 10, 2025–2037 (1996)

    Article  CAS  PubMed  Google Scholar 

  28. Spell, R. M. & Jinks-Robertson, S. Examination of the roles of Sgs1 and Srs2 helicases in the enforcement of recombination fidelity in Saccharomyces cerevisiae . Genetics 168, 1855–1865 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Myung, K., Datta, A., Chen, C. & Kolodner, R. D. SGS1, the Saccharomyces cerevisiae homologue of BLM and WRN, suppresses genome instability and homeologous recombination. Nature Genet. 27, 113–116 (2001)

    Article  CAS  PubMed  Google Scholar 

  30. Sugawara, N., Goldfarb, T., Studamire, B., Alani, E. & Haber, J. E. Heteroduplex rejection during single-strand annealing requires Sgs1 helicase and mismatch repair proteins Msh2 and Msh6 but not Pms1. Proc. Natl Acad. Sci. USA 101, 9315–9320 (2004)

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  31. Mullen, J. R., Nallaseth, F. S., Lan, Y. Q., Slagle, C. E. & Brill, S. J. Yeast Rmi1/Nce4 controls genome stability as a subunit of the Sgs1-Top3 complex. Mol. Cell. Biol. 25, 4476–4487 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lydeard, J. R., Jain, S., Yamaguchi, M. & Haber, J. E. Break-induced replication and telomerase-independent telomere maintenance require Pol32. Nature 448, 820–823 (2007)

    Article  CAS  ADS  PubMed  Google Scholar 

  33. Zou, H. & Rothstein, R. Holliday junctions accumulate in replication mutants via a RecA homolog-independent mechanism. Cell 90, 87–96 (1997)

    Article  CAS  PubMed  Google Scholar 

  34. Hwang, J. Y., Smith, S. & Myung, K. The Rad1-Rad10 complex promotes the production of gross chromosomal rearrangements from spontaneous DNA damage in Saccharomyces cerevisiae . Genetics 169, 1927–1937 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Roberts, T. M., Zaidi, I. W., Vaisica, J. A., Peter, M. & Brown, G. W. Regulation of Rtt107 recruitment to stalled DNA replication forks by the cullin Rtt101 and the Rtt109 acetyltransferase. Mol. Biol. Cell 19, 171–180 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Conaway, R. C. & Conaway, J. W. The INO80 chromatin remodeling complex in transcription, replication and repair. Trends Biochem. Sci. 34, 71–77 (2009)

    Article  CAS  PubMed  Google Scholar 

  37. Mayer, M. L., Gygi, S. P., Aebersold, R. & Hieter, P. Identification of RFC(Ctf18p, Ctf8p, Dcc1p): an alternative RFC complex required for sister chromatid cohesion in S. cerevisiae . Mol. Cell 7, 959–970 (2001)

    Article  CAS  PubMed  Google Scholar 

  38. Osborn, A. J. & Elledge, S. J. Mrc1 is a replication fork component whose phosphorylation in response to DNA replication stress activates Rad53. Genes Dev. 17, 1755–1767 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Katou, Y. et al. S-phase checkpoint proteins Tof1 and Mrc1 form a stable replication-pausing complex. Nature 424, 1078–1083 (2003)

    Article  CAS  ADS  PubMed  Google Scholar 

  40. Mullen, J. R., Kaliraman, V., Ibrahim, S. S. & Brill, S. J. Requirement for three novel protein complexes in the absence of the Sgs1 DNA helicase in Saccharomyces cerevisiae . Genetics 157, 103–118 (2001)

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Schmidt, K. H. & Kolodner, R. D. Requirement of Rrm3 helicase for repair of spontaneous DNA lesions in cells lacking Srs2 or Sgs1 helicase. Mol. Cell. Biol. 24, 3213–3226 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Fabre, F., Chan, A., Heyer, W. D. & Gangloff, S. Alternate pathways involving Sgs1/Top3, Mus81/Mms4, and Srs2 prevent formation of toxic recombination intermediates from single-stranded gaps created by DNA replication. Proc. Natl Acad. Sci. USA 99, 16887–16892 (2002)

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  43. Torres, J. Z., Schnakenberg, S. L. & Zakian, V. A. Saccharomyces cerevisiae Rrm3p DNA helicase promotes genome integrity by preventing replication fork stalling: viability of rrm3 cells requires the intra-S-phase checkpoint and fork restart activities. Mol. Cell. Biol. 24, 3198–3212 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sugawara, N., Paques, F., Colaiacovo, M. & Haber, J. E. Role of Saccharomyces cerevisiae Msh2 and Msh3 repair proteins in double-strand break-induced recombination. Proc. Natl Acad. Sci. USA 94, 9214–9219 (1997)

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  45. Fiorentini, P., Huang, K. N., Tishkoff, D. X., Kolodner, R. D. & Symington, L. S. Exonuclease I of Saccharomyces cerevisiae functions in mitotic recombination in vivo and in vitro . Mol. Cell. Biol. 17, 2764–2773 (1997)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Krejci, L. et al. DNA helicase Srs2 disrupts the Rad51 presynaptic filament. Nature 423, 305–309 (2003)

    Article  CAS  ADS  PubMed  Google Scholar 

  47. Prakash, R. et al. Yeast Mph1 helicase dissociates Rad51-made D-loops: implications for crossover control in mitotic recombination. Genes Dev. 23, 67–79 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Veaute, X. et al. The Srs2 helicase prevents recombination by disrupting Rad51 nucleoprotein filaments. Nature 423, 309–312 (2003)

    Article  CAS  ADS  PubMed  Google Scholar 

  49. Hoege, C., Pfander, B., Moldovan, G. L., Pyrowolakis, G. & Jentsch, S. RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. Nature 419, 135–141 (2002)

    Article  CAS  ADS  PubMed  Google Scholar 

  50. Chen, C. C. et al. Acetylated lysine 56 on histone H3 drives chromatin assembly after repair and signals for the completion of repair. Cell 134, 231–243 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Sikorski, R. S. & Hieter, P. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae . Genetics 122, 19–27 (1989)

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Alani, E., Cao, L. & Kleckner, N. A method for gene disruption that allows repeated use of URA3 selection in the construction of multiply disrupted yeast strains. Genetics 116, 541–545 (1987)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the UCSD Microarray Core Facility for assistance in the aCGH experiments and C. Smith, S. Shell and J. Petrini for comments on the manuscript. This work was supported by NIH grant GM26017.

Author Contributions C.D.P., R.D.K. and T.K.H. designed the experiments. C.D.P. and T.K.H. performed the experiment. C.D.P. and R.D.K. analysed the data and wrote the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard D. Kolodner.

Supplementary information

Supplementary Information

This file contains Supplementary Tables 1-2 and Supplementary Figures 1-3 with Legends. (PDF 310 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Putnam, C., Hayes, T. & Kolodner, R. Specific pathways prevent duplication-mediated genome rearrangements. Nature 460, 984–989 (2009). https://doi.org/10.1038/nature08217

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature08217

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing