Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Resonant stripping as the origin of dwarf spheroidal galaxies

Abstract

Dwarf spheroidal galaxies are the most dark-matter-dominated systems in the nearby Universe1,2,3 and their origin is one of the outstanding puzzles of how galaxies form. Dwarf spheroidals are poor in gas and stars, making them unusually faint4,5,6, and those known as ultra-faint dwarfs7,8 have by far the lowest measured stellar content of any galaxy9,10. Previous theories11 require that dwarf spheroidals orbit near giant galaxies like the Milky Way, but some dwarfs have been observed in the outskirts of the Local Group12. Here we report simulations of encounters between dwarf disk galaxies and somewhat larger objects. We find that the encounters excite a process, which we term ‘resonant stripping’, that transforms them into dwarf spheroidals. This effect is distinct from other mechanisms proposed to form dwarf spheroidals, including mergers13, galaxy–galaxy harassment14, or tidal and ram pressure stripping, because it is driven by gravitational resonances. It may account for some of the observed properties of dwarf spheroidals in the Local Group. Within this framework, dwarf spheroidals should form and interact in pairs, leaving detectable long stellar streams and tails.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Encounters between galaxies.
Figure 2: The time evolution of the dark-mass to luminous-mass ratio.
Figure 3: Radial stellar surface mass density profile of the smaller dwarf.
Figure 4: The time evolution of the structural properties of the small dwarf galaxy.

References

  1. 1

    Kleyna, J. T., Wilkinson, M. I., Evans, N. W., Gilmore, G. & Frayn, C. Dark matter in dwarf spheroidals – II. Observations and modeling of Draco. Mon. Not. R. Astron. Soc. 330, 778–791 (2002)

    ADS  Article  Google Scholar 

  2. 2

    Chapman, S. et al. Keck DEIMOS kinematic study of Andromeda IX: dark matter on the smallest galactic scales. Astrophys. J. 632, L87–L90 (2005)

    ADS  CAS  Article  Google Scholar 

  3. 3

    Wilkinson, M. I. et al. Kinematically cold populations at large radii in the Draco and Ursa minor dwarf spheroidal galaxies. Astrophys. J. 611, L21–L24 (2004)

    ADS  Article  Google Scholar 

  4. 4

    Mateo, M. Dwarf galaxies of the Local Group. Annu. Rev. Astron. Astrophys. 36, 435–506 (1998)

    ADS  CAS  Article  Google Scholar 

  5. 5

    Grebel, E. K. in The Stellar Content of Local Group Galaxies (eds Whitelock, P. & Cannon, R.) 17–38 (IAU Symposium 192, Astronomical Society of the Pacific, 1999)

    Google Scholar 

  6. 6

    Gallagher, J. S., Madsen, G. J., Reynolds, R. J., Grebel, E. K. & Smecker-Hane, T. A. A search for ionized gas in the Draco and Ursa Minor dwarf spheroidal galaxies. Astrophys. J. 588, 326–330 (2003)

    ADS  Article  Google Scholar 

  7. 7

    Willman, B. et al. A new Milky Way dwarf galaxy in Ursa Major. Astrophys. J. 626, L85–L88 (2005)

    ADS  Article  Google Scholar 

  8. 8

    Zucker, D. B. et al. A new Milky Way dwarf satellite in Canes Venatici. Astrophys. J. 643, L103–L106 (2006)

    ADS  Article  Google Scholar 

  9. 9

    Peñarrubia, J., Navarro, J. F. & McConnachie, A. The tidal evolution of Local Group dwarf spheroidals. Astrophys. J. 673, 226–240 (2008)

    ADS  Article  Google Scholar 

  10. 10

    Strigari, L. E. et al. A common mass scale for satellite galaxies of the Milky Way. Nature 454, 1096–1097 (2008)

    ADS  CAS  Article  Google Scholar 

  11. 11

    Mayer, L., Kazantzidis, S., Mastropietro, C. & Wadsley, J. Early gas stripping as the origin of the darkest galaxies in the Universe. Nature 445, 738–740 (2007)

    ADS  CAS  Article  Google Scholar 

  12. 12

    Grebel, E. K., Gallagher, J. S. & Harbeck, D. The progenitors of dwarf spheroidal galaxies. Astrophys. J. 125, 1926–1939 (2003)

    ADS  Google Scholar 

  13. 13

    Toomre, A. in The Evolution of Galaxies and Stellar Populations (eds Tinsley, B. M. & Larson, R. B.) 401–426 (Yale University Observatory, 1977)

    Google Scholar 

  14. 14

    Moore, B., Katz, N., Lake, G., Dressler, A. & Oemler, A. Galaxy harassment and the evolution of clusters of galaxies. Nature 379, 613–616 (1996)

    ADS  CAS  Article  Google Scholar 

  15. 15

    Bullock, J., Kravtsov, A. & Weinberg, D. H. Reionization and the abundance of galactic satellites. Astrophys. J. 539, 517–521 (2000)

    ADS  Article  Google Scholar 

  16. 16

    Dekel, A. & Silk, J. The origin of dwarf galaxies, cold dark matter, and biased galaxy formation. Astrophys. J. 303, 39–55 (1986)

    ADS  CAS  Article  Google Scholar 

  17. 17

    Mac Low, M. M. & Ferrara, A. Starburst-driven mass loss from dwarf galaxies: efficiency and metal ejection. Astrophys. J. 513, 142–155 (1999)

    ADS  Article  Google Scholar 

  18. 18

    Gnedin, O. Y., Hernquist, L. & Ostriker, J. P. Tidal shocking by extended mass distributions. Astrophys. J. 514, 109–118 (1999)

    ADS  Article  Google Scholar 

  19. 19

    Sales, L., Navarro, J. F., Abadi, M. G. & Steinmetz, M. Cosmic menage a trois: the origin of satellite galaxies on extreme orbits. Mon. Not. R. Astron. Soc. 379, 1475–1483 (2007)

    ADS  Article  Google Scholar 

  20. 20

    Lynden-Bell, D. Dwarf galaxies and globular clusters in high velocity hydrogen streams. Mon. Not. R. Astron. Soc. 174, 695–710 (1976)

    ADS  CAS  Article  Google Scholar 

  21. 21

    Libeskind, N. I. et al. The distribution of satellite galaxies: the great pancake. Mon. Not. R. Astron. Soc. 363, 146–152 (2005)

    ADS  Article  Google Scholar 

  22. 22

    Zentner, A. R., Kravtsov, A. V., Gnedin, O. Y. & Klypin, A. A. The anisotropic distribution of galactic satellites. Astrophys. J. 629, 219–232 (2005)

    ADS  Article  Google Scholar 

  23. 23

    D'Onghia, E. & Lake, G. Small dwarf galaxies within larger dwarfs: why some are luminous while most go dark. Astrophys. J. 686, L61–L64 (2008)

    ADS  Article  Google Scholar 

  24. 24

    Tully, R. B. et al. Associations of dwarf galaxies. Astron. J. 132, 729–748 (2006)

    ADS  CAS  Article  Google Scholar 

  25. 25

    Toomre, A. & Toomre, J. Galactic bridges and tails. Astrophys. J. 686, L61–L64 (1972)

    Google Scholar 

  26. 26

    Ferguson, H. C. & Binggeli, B. Dwarf elliptical galaxies. Annu. Rev. Astron. Astrophys. 6, 67–122 (1994)

    Article  Google Scholar 

  27. 27

    Penny, S., Conselice, C., De Rijcke, S. & Held, E. V. Hubble Space Telescope survey of the Perseus Cluster – I: The structure and dark matter content of cluster dwarf spheroidals. Mon. Not. R. Astron. Soc. 393, 1054–1062 (2009)

    ADS  Article  Google Scholar 

  28. 28

    Klypin, A., Kravtsov, A. V., Valenzuela, O. & Prada, F. Where are the missing galactic satellites? Astrophys. J. 522, 82–92 (1999)

    ADS  CAS  Article  Google Scholar 

  29. 29

    Moore, B. et al. Dark matter substructure within galactic halos. Astrophys. J. 524, L19–L22 (1999)

    ADS  CAS  Article  Google Scholar 

  30. 30

    Rines, K. & Geller, M. J. Spectroscopic determination of the luminosity function in the galaxy clusters A2199 and Virgo. Astrophys. J. 135, 1837–1848 (2008)

    ADS  Google Scholar 

Download references

Acknowledgements

This research was partly supported by an EU Marie Curie Intra-European Fellowship under contract MEIF-041569 and by an NSERC postgraduate fellowship. Numerical simulations were performed on the Odyssey supercomputer at Harvard University.

Author Contributions E.D. designed and led the study and analysis, ran the simulations, and wrote the paper; G.B. was involved in study design and contributed to text writing; T.J.C. designed the initial condition programs; and L.H. was involved in study design and contributed to text writing.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Elena D'Onghia.

Supplementary information

Supplementary Information

This file contains Supplementary Methods, Supplementary Data, Supplementary Figures 1- 9 with Legends and Supplementary References. (PDF 285 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

D'Onghia, E., Besla, G., Cox, T. et al. Resonant stripping as the origin of dwarf spheroidal galaxies. Nature 460, 605–607 (2009). https://doi.org/10.1038/nature08215

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing