Evidence for an early prokaryotic endosymbiosis

Article metrics

Abstract

Endosymbioses have dramatically altered eukaryotic life, but are thought to have negligibly affected prokaryotic evolution. Here, by analysing the flows of protein families, I present evidence that the double-membrane, Gram-negative prokaryotes were formed as the result of a symbiosis between an ancient actinobacterium and an ancient clostridium. The resulting taxon has been extraordinarily successful, and has profoundly altered the evolution of life by providing endosymbionts necessary for the emergence of eukaryotes and by generating Earth’s oxygen atmosphere. Their double-membrane architecture and the observed genome flows into them suggest a common evolutionary mechanism for their origin: an endosymbiosis between a clostridium and actinobacterium.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Schematic diagrams illustrating prokaryotic symbionts.
Figure 2: An illustration of three steps required for the identification of an endosymbiont from gene flow data, and the tree of life that best fits the gene flow data.
Figure 3: A schematic diagram illustrating the prokaryotic ring of life.

References

  1. 1

    Margulis, L. Origin of the Eukaryotic Cells (Yale Univ. Press, 1970)

  2. 2

    Margulis, L. Symbiosis in Cell Evolution (Freeman and Company, 1981)

  3. 3

    Lake, J. A. & Rivera, M. C. Was the nucleus the first endosymbiont? Proc. Natl Acad. Sci. USA 91, 2880–2881 (1994)

  4. 4

    Martin, W. & Muller, M. The hydrogen hypothesis for the first eukaryote. Nature 392, 37–41 (1998)

  5. 5

    Lang, B. F. & Gray, M. W. Mitochondrial genome evolution and the origin of eukaryotes. Annu. Rev. Genet. 33, 351–397 (1999)

  6. 6

    Poole, A., Jeffares, D. & Penny, D. Early evolution: prokaryotes, the new kids on the block. Bioessays 21, 880–889 (1999)

  7. 7

    Keeling, P. J. & Palmer, J. D. Horizontal gene transfer in eukaryotic evolution. Nature Rev. Genet. 9, 605–614 (2008)

  8. 8

    Archibald, J. M. & Keeling, P. J. Recycled plastids: a 'green movement' in eukaryotic evolution. Trends Genet. 18, 577–584 (2002)

  9. 9

    Syvanen, M. & Kado, C. I. Horizontal Gene Transfer (Chapman and Hall, 1998)

  10. 10

    Jain, R., Rivera, M. C., Moore, J. E. & Lake, J. A. Horizontal gene transfer in microbial genome evolution. Theor. Popul. Biol. 61, 489–495 (2002)

  11. 11

    Bowler, C., Karl, D. M. & Colwell, R. R. Microbial oceanography in a sea of opportunity. Nature 459, 180–184 (2009)

  12. 12

    Fuhrman, J. A. Microbial community structure and its functional implications. Nature 459, 193–199 (2009)

  13. 13

    DeLong, E. F. The microbial ocean from genomes to biomes. Nature 459, 200–206 (2009)

  14. 14

    von Dohlen, C. D., Kohler, S., Alsop, S. T. & McManus, W. R. Mealybug β-proteobacterial endosymbionts contain γ-proteobacterial symbionts. Nature 412, 433–436 (2001)

  15. 15

    Froestl, J. & Overmann, J. Phylogenetic affiliation of the bacteria that constitute phototrophic consortia. Arch. Microbiol. 174, 50–58 (2000)

  16. 16

    Wanner, G., Vogl, K. & Overmann, J. Ultrastructural characterization of the prokaryotic symbiosis in “Chlorochromatium aggregatum”. J. Bacteriol. 190, 3721–3730 (2008)

  17. 17

    Hilario, E. & Gogarten, J. P. Horizontal transfer of ATPase genes—the tree of life becomes a net of life. Biosystems 31, 111–119 (1993)

  18. 18

    Dagan, T. & Martin, W. The tree of one percent. Genome Biol. 7, 1181–1187 (2006)

  19. 19

    Jain, R., Rivera, M. C., Moore, J. E. & Lake, J. A. Horizontal gene transfer accelerates genome innovation and evolution. Mol. Biol. Evol. 20, 1598–1602 (2003)

  20. 20

    Rivera, M. C. & Lake, J. A. The ring of life: evidence for a genome fusion origin of eukaryotes. Nature 431, 152–155 (2004)

  21. 21

    Konstantinidis, K. T. & Tiedje, J. M. Towards a genome-based taxonomy for prokaryotes. J. Bacteriol. 187, 6258–6264 (2005)

  22. 22

    Sorek, R. et al. Genome-wide experimental determination of barriers to horizontal gene transfer. Science 318, 1449–1452 (2007)

  23. 23

    Doolittle, W. F. Phylogenetic classification and the universal tree. Science 284, 2124–2128 (1999)

  24. 24

    McInerney, J. O. & Pisani, D. Paradigm for life. Science 318, 1390–1391 (2007)

  25. 25

    Martin, W. & Embley, T. M. Early evolution comes full circle. Nature 431, 134–136 (2004)

  26. 26

    Ohno, M. et al. Symbiobacterium thermophilum gen. nov., sp. nov., a symbiotic thermophile that depends on co-culture with a Bacillus strain for growth. Int. J. Syst. Evol. Microbiol. 50, 1829–1832 (2000)

  27. 27

    Garrity, G. & Holt, J. G. in Bergey's Manual of Systematic Bacteriology (eds Boone, D. & Castenholz, R. W.) 119–141 (Springer, 2001)

  28. 28

    Wu, M. et al. Life in hot carbon monoxide: the complete genome sequence of Carboxydothermus hydrogenoformans Z-2901. PLoS Genet. 1, 563–574 (2005)

  29. 29

    Lake, J. A., Servin, J. A., Herbold, C. W. & Skophammer, R. G. Evidence for a new root of the tree of life. Syst. Biol. 57, 835–843 (2008)

  30. 30

    Skophammer, R. G., Herbold, C. W., Rivera, M., Servin, J. A. & Lake, J. A. Evidence that the root of the tree of life is not within the Archaea. Mol. Biol. Evol. 23, 1648–1651 (2006)

  31. 31

    Lake, J. A., Herbold, C. W., Rivera, M. C., Servin, J. A. & Skophammer, R. G. Rooting the tree of life using non-ubiquitous genes. Mol. Biol. Evol. 24, 130–136 (2007)

  32. 32

    Skophammer, R. G., Servin, J. A., Herbold, C. W. & Lake, J. A. Evidence for a Gram positive, eubacterial root of the tree of life. Mol. Biol. Evol. 24, 1761–1768 (2007)

  33. 33

    Ueda, K. et al. Genome sequence of Symbiobacterium thermophilum, an uncultivable bacterium that depends on microbial commensalism. Nucleic Acids Res. 32, 4937–4944 (2004)

  34. 34

    Boone, D. & Castenholz, R. W. Bergey’s Manual of Systematic Bacteriology 2nd edn Vol. 1, The Archaea and the Deep Branching and Phototrophic Bacteria (ed. Garrity, G. M.) (Springer, 2001)

  35. 35

    Wilkinson, M., McInerney, J. O., Hirt, R. P., Foster, P. G. & Embley, T. M. Of clades and clans: terms for phylogenetic relationships in unrooted trees. Trends Ecol. Evol. 22, 114–115 (2007)

  36. 36

    Stanier, R. Y., Adelberg, E. A. & Ingraham, J. L. The Microbial World (Prentice-Hall, 1976)

  37. 37

    Gupta, R. S. Protein phylogenies and signature sequences: a reappraisal of evolutionary relationships among archaebacteria, eubacteria, and eukaryotes. Microbiol. Mol. Biol. Rev. 62, 1435–1491 (1998)

  38. 38

    Lake, J. A. Reconstructing evolutionary graphs: 3D parsimony. Mol. Biol. Evol. 25, 1677–1682 (2008)

  39. 39

    Lake, J. A. & Rivera, M. C. Deriving the genomic tree of life in the presence of horizontal gene transfer: conditioned reconstruction. Mol. Biol. Evol. 21, 681–690 (2004)

  40. 40

    Lake, J. A. Calculating the probability of multitaxon evolutionary trees—bootstrappers gambit. Proc. Natl Acad. Sci. USA 92, 9662–9666 (1995)

  41. 41

    Jain, R., Rivera, M. C. & Lake, J. A. Horizontal gene transfer among genomes: the complexity hypothesis. Proc. Natl Acad. Sci. USA 96, 3801–3806 (1999)

  42. 42

    Gest, H. & Favinger, J. L. Heliobacterium chlorum gen. nov. sp. nov., an anoxygenic brownish-green photosynthetic bacterium containing a new form of bacteriochlorophyll. Arch. Microbiol. 136, 11–16 (1983)

  43. 43

    Raymond, J., Zhaxybayeva, O., Gogarten, J. P., Gerdes, S. Y. & Blankenship, R. E. Whole-genome analysis of photosynthetic prokaryotes. Science 298, 1616–1620 (2002)

  44. 44

    Boone, D. R., Castenholz, R. W., Johnson, R. L. & Liu, Y. Diffusion of the interspecies electron carriers H2 and formate in methanogenic ecosystems and its implications in the measurement of Km for H2 or formate uptake. Appl. Environ. Microbiol. 55, 1735–1741 (1989)

  45. 45

    Overmann, J. & Schubert, K. Phototropic consortia: model systems for symbiotic interrelations between prokaryotes. Arch. Microbiol. 177, 201–208 (2002)

  46. 46

    Tyson, G. W. et al. Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature 428, 37–43 (2004)

  47. 47

    Margulis, L. in Genomes in Flux (eds Gogarten, M. Olendzenski, L. & Gogarten, J. P.) (Humana, in the press)

  48. 48

    Fischer, W. W. Life before the rise of oxygen. Nature 455, 1051–1052 (2008)

  49. 49

    Rasmussen, B., Fletcher, I. R., Brocks, J. J. & Kilburn, M. R. Reassessing the first appearance of eukaryotes and cyanobacteria. Nature 455, 1101–1104 (2008)

  50. 50

    Ventura, G. T. et al. Molecular evidence of Late Archean archaea and the presence of a subsurface hydrothermal biosphere. Proc. Natl Acad. Sci. USA 104, 14260–14265 (2007)

  51. 51

    Servin, J. A., Herbold, C. W., Skophammer, R. G. & Lake, J. A. Evidence excluding the root of the tree of life from the Actinobacteria. Mol. Biol. Evol. 25, 1–4 (2008)

Download references

Acknowledgements

I thank C. Herbold, R. Skophammer, A. Norman and J. Servin for advice and help. This work was supported by grants from the NSF and the UCLA NASA Astrobiology Institute to J.A.L.

Author information

Correspondence to James A. Lake.

Supplementary information

Supplementary Information

This file contains Supplementary Notes, Supplementary Tables S1 and S2A-S2J and Supplementary References. (PDF 482 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lake, J. Evidence for an early prokaryotic endosymbiosis. Nature 460, 967–971 (2009) doi:10.1038/nature08183

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.