Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

State-independent experimental test of quantum contextuality

Abstract

The question of whether quantum phenomena can be explained by classical models with hidden variables is the subject of a long-lasting debate1,2. In 1964, Bell showed that certain types of classical models cannot explain the quantum mechanical predictions for specific states of distant particles, and some types of hidden variable models3,4,5,6,7,8,9 have been experimentally ruled out. An intuitive feature of classical models is non-contextuality: the property that any measurement has a value independent of other compatible measurements being carried out at the same time. However, a theorem derived by Kochen, Specker and Bell10,11,12 shows that non-contextuality is in conflict with quantum mechanics. The conflict resides in the structure of the theory and is independent of the properties of special states. It has been debated whether the Kochen–Specker theorem could be experimentally tested at all13,14. First tests of quantum contextuality have been proposed only recently, and undertaken with photons15,16 and neutrons17,18. But these tests required the generation of special quantum states and left various loopholes open. Here we perform an experiment with trapped ions that demonstrates a state-independent conflict with non-contextuality. The experiment is not subject to the detection loophole and we show that, despite imperfections and possible measurement disturbances, our results cannot be explained in non-contextual terms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental measurement scheme.
Figure 2: Measurement correlations for the singlet state.
Figure 3: State-independence of the Kochen–Specker inequality.
Figure 4: Permutation within rows and columns of the Mermin–Peres square.

Similar content being viewed by others

References

  1. Einstein, A., Podolsky, B. & Rosen, N. Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777–780 (1935)

    Article  ADS  CAS  Google Scholar 

  2. Bell, J. S. On the Einstein-Podolsky-Rosen paradox. Physics 1, 195–200 (1964)

    Article  MathSciNet  Google Scholar 

  3. Aspect, A., Dalibard, J. & Roger, G. Experimental test of Bell's inequalities using time-varying analyzers. Phys. Rev. Lett. 49, 1804–1807 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  4. Tittel, W., Brendel, J., Zbinden, H. & Gisin, N. Violation of Bell inequalities by photons more than 10 km apart. Phys. Rev. Lett. 81, 3563–3566 (1998)

    Article  ADS  CAS  Google Scholar 

  5. Weihs, G., Jennewein, T., Simon, C., Weinfurter, H. & Zeilinger, A. Violation of Bell's inequality under strict Einstein locality conditions. Phys. Rev. Lett. 81, 5039–5043 (1998)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  6. Rowe, M. A. et al. Experimental violation of a Bell's inequality with efficient detection. Nature 409, 791–794 (2001)

    Article  ADS  CAS  Google Scholar 

  7. Gröblacher, S. et al. An experimental test of non-local realism. Nature 446, 871–875 (2007)

    Article  ADS  Google Scholar 

  8. Branciard, C. et al. Testing quantum correlations versus single-particle properties within Leggett's model and beyond. Nature Phys. 4, 681–685 (2008)

    Article  ADS  CAS  Google Scholar 

  9. Matsukevich, D. N., Maunz, P., Moehring, D. L., Olmschenk, S. & Monroe, C. Bell inequality violation with two remote atomic qubits. Phys. Rev. Lett. 100, 150404 (2008)

    Article  ADS  CAS  Google Scholar 

  10. Specker, E. Die Logik nicht gleichzeitig entscheidbarer Aussagen. Dialectica 14, 239–246 (1960)

    Article  MathSciNet  Google Scholar 

  11. Bell, J. S. On the problem of hidden variables in quantum mechanics. Rev. Mod. Phys. 38, 447–452 (1966)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  12. Kochen, S. & Specker, E. P. The problem of hidden variables in quantum mechanics. J. Math. Mech. 17, 59–87 (1967)

    MathSciNet  MATH  Google Scholar 

  13. Cabello, A. & García-Alcaine, G. Proposed experimental tests of the Bell-Kochen-Specker theorem. Phys. Rev. Lett. 80, 1797–1799 (1998)

    Article  ADS  CAS  Google Scholar 

  14. Meyer, D. A. Finite precision measurement nullifies the Kochen-Specker theorem. Phys. Rev. Lett. 83, 3751–3754 (1999)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  15. Michler, M., Weinfurter, H. & Żukowski, M. Experiments towards falsification of noncontextual hidden variable theories. Phys. Rev. Lett. 84, 5457–5461 (2000)

    Article  ADS  CAS  Google Scholar 

  16. Huang, Y.-F., Li, C.-F., Zhang, Y.-S., Pan, J.-W. & Guo, G.-C. Experimental test of the Kochen-Specker theorem with single photons. Phys. Rev. Lett. 90, 250401 (2003)

    Article  ADS  Google Scholar 

  17. Hasegawa, Y., Loidl, R., Badurek, G., Baron, M. & Rauch, H. Quantum contextuality in a single-neutron optical experiment. Phys. Rev. Lett. 97, 230401 (2006)

    Article  ADS  Google Scholar 

  18. Bartosik, H. et al. Experimental test of quantum contextuality in neutron interferometry. Preprint at 〈http://arXiv.org/abs/0904.4576〉 (2009)

  19. Peres, A. Incompatible results of quantum measurements. Phys. Lett. A 151, 107–108 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  20. Mermin, N. D. Simple unified form for the major no-hidden-variables theorems. Phys. Rev. Lett. 65, 3373–3376 (1990)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  21. Cabello, A. Experimentally testable state-independent quantum contextuality. Phys. Rev. Lett. 101, 210401 (2008)

    Article  ADS  Google Scholar 

  22. Häffner, H., Roos, C. F. & Blatt, R. Quantum computing with trapped ions. Phys. Rep. 469, 155–203 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  23. Kirchmair, G. et al. Deterministic entanglement of ions in thermal states of motion. N. J. Phys. 11, 023002 (2009)

    Article  Google Scholar 

  24. Mølmer, K. & Sørensen, A. Multiparticle entanglement of hot trapped ions. Phys. Rev. Lett. 82, 1835–1838 (1999)

    Article  ADS  Google Scholar 

  25. Benhelm, J., Kirchmair, G., Roos, C. F. & Blatt, R. Towards fault-tolerant quantum computing with trapped ions. Nature Phys. 4, 463–466 (2008)

    Article  ADS  CAS  Google Scholar 

  26. Nebendahl, V., Häffner, H. & Roos, C. F. Optimal control of entangling operations for trapped-ion quantum computing. Phys. Rev. A 79, 012312 (2009)

    Article  ADS  Google Scholar 

  27. Bechmann-Pasquinucci, H. & Peres, A. Quantum cryptography with 3-state systems. Phys. Rev. Lett. 85, 3313–3316 (2000)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  28. Galvão, E. F. Foundations of Quantum Theory and Quantum Information Applications. Ph.D. thesis, Oxford Univ. (2002)

    Google Scholar 

  29. Spekkens, R. W., Buzacott, D. H., Keehn, A. J., Toner, B. & Pryde, G. J. Preparation contextuality powers parity-oblivious multiplexing. Phys. Rev. Lett. 102, 010401 (2009)

    Article  ADS  Google Scholar 

  30. Roos, C. F. et al. Control and measurement of three-qubit entangled states. Science 304, 1478–1480 (2004)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge support by the Austrian Science Fund (FWF), by the European Commission (SCALA, OLAQUI and QICS networks, and the Marie-Curie programme), by the Institut für Quanteninformation GmbH, by the Spanish MCI Project FIS2008-05596 and the Junta de Andalucía Excellence Project P06-FQM-02243. This material is based on work supported in part by IARPA.

Author Contributions G.K., F.Z. and R.G. performed the experiment and partially analysed the data; M.K., O.G. and A.C. provided the theoretical part and the modelling of imperfect measurements; C.F.R. conceived the experiment and analysed the data; R.B., G.K., F.Z., R.G. and C.F.R. contributed to the experimental set-up; and all authors co-wrote the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. F. Roos.

Supplementary information

Supplementary Table

This file contains Supplementary Table 1. (PDF 47 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kirchmair, G., Zähringer, F., Gerritsma, R. et al. State-independent experimental test of quantum contextuality. Nature 460, 494–497 (2009). https://doi.org/10.1038/nature08172

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature08172

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing