Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

mTOR regulates memory CD8 T-cell differentiation

Abstract

Memory CD8 T cells are a critical component of protective immunity, and inducing effective memory T-cell responses is a major goal of vaccines against chronic infections and tumours1,2,3. Considerable effort has gone into designing vaccine regimens that will increase the magnitude of the memory response, but there has been minimal emphasis on developing strategies to improve the functional qualities of memory T cells4. Here we show that mTOR (mammalian target of rapamycin5, also known as FRAP1) is a major regulator of memory CD8 T-cell differentiation, and in contrast to what we expected, the immunosuppressive drug rapamycin has immunostimulatory effects on the generation of memory CD8 T cells. Treatment of mice with rapamycin following acute lymphocytic choriomeningitis virus infection enhanced not only the quantity but also the quality of virus-specific CD8 T cells. Similar effects were seen after immunization of mice with a vaccine based on non-replicating virus-like particles. In addition, rapamycin treatment also enhanced memory T-cell responses in non-human primates following vaccination with modified vaccinia virus Ankara. Rapamycin was effective during both the expansion and contraction phases of the T-cell response; during the expansion phase it increased the number of memory precursors, and during the contraction phase (effector to memory transition) it accelerated the memory T-cell differentiation program. Experiments using RNA interference to inhibit expression of mTOR, raptor (also known as 4932417H02Rik) or FKBP12 (also known as FKBP1A) in antigen-specific CD8 T cells showed that mTOR acts intrinsically through the mTORC1 (mTOR complex 1) pathway to regulate memory T-cell differentiation. Thus these studies identify a molecular pathway regulating memory formation and provide an effective strategy for improving the functional qualities of vaccine- or infection-induced memory T cells.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Rapamycin enhances the number and quality of virus-specific memory CD8 T cells.
Figure 2: Rapamycin treatment during T-cell expansion phase increases the number of memory precursors.
Figure 3: Rapamycin treatment during effector to memory transition phase accelerates memory differentiation.
Figure 4: mTOR acts intrinsically in antigen-specific CD8 T cells through the mTORC1 pathway to regulate memory T-cell differentiation.

Similar content being viewed by others

References

  1. Williams, M. A. & Bevan, M. J. Effector and memory CTL differentiation. Annu. Rev. Immunol. 25, 171–192 (2007)

    Article  CAS  Google Scholar 

  2. Surh, C. D. & Sprent, J. Homeostasis of naive and memory T cells. Immunity 29, 848–862 (2008)

    Article  CAS  Google Scholar 

  3. Klebanoff, C. A., Gattinoni, L. & Restifo, N. P. CD8+ T-cell memory in tumor immunology and immunotherapy. Immunol. Rev. 211, 214–224 (2006)

    Article  CAS  Google Scholar 

  4. Seder, R. A., Darrah, P. A. & Roederer, M. T-cell quality in memory and protection: implications for vaccine design. Nature Rev. Immunol. 8, 247–258 (2008)

    Article  CAS  Google Scholar 

  5. Wullschleger, S., Loewith, R. & Hall, M. N. TOR signaling in growth and metabolism. Cell 124, 471–484 (2006)

    Article  CAS  Google Scholar 

  6. Cao, W. et al. Toll-like receptor-mediated induction of type I interferon in plasmacytoid dendritic cells requires the rapamycin-sensitive PI(3)K-mTOR-p70S6K pathway. Nature Immunol. 9, 1157–1164 (2008)

    Article  CAS  Google Scholar 

  7. Sinclair, L. V. et al. Phosphatidylinositol-3-OH kinase and nutrient-sensing mTOR pathways control T lymphocyte trafficking. Nature Immunol. 9, 513–521 (2008)

    Article  CAS  Google Scholar 

  8. Sauer, S. et al. T cell receptor signaling controls Foxp3 expression via PI3K, Akt, and mTOR. Proc. Natl Acad. Sci. USA 105, 7797–7802 (2008)

    Article  ADS  CAS  Google Scholar 

  9. Haxhinasto, S., Mathis, D. & Benoist, C. The AKT-mTOR axis regulates de novo differentiation of CD4+Foxp3+ cells. J. Exp. Med. 205, 565–574 (2008)

    Article  CAS  Google Scholar 

  10. Kaech, S. M. et al. Selective expression of the interleukin 7 receptor identifies effector CD8 T cells that give rise to long-lived memory cells. Nature Immunol. 4, 1191–1198 (2003)

    Article  CAS  Google Scholar 

  11. Huster, K. M. et al. Selective expression of IL-7 receptor on memory T cells identifies early CD40L-dependent generation of distinct CD8+ memory T cell subsets. Proc. Natl Acad. Sci. USA 101, 5610–5615 (2004)

    Article  ADS  CAS  Google Scholar 

  12. Schluns, K. S., Kieper, W. C., Jameson, S. C. & Lefrançois, L. Interleukin-7 mediates the homeostasis of naive and memory CD8 T cells in vivo . Nature Immunol. 1, 426–432 (2000)

    Article  CAS  Google Scholar 

  13. Tan, J. T. et al. Interleukin (IL)-15 and IL-7 jointly regulate homeostatic proliferation of memory phenotype CD8+ cells but are not required for memory phenotype CD4+ cells. J. Exp. Med. 195, 1523–1532 (2002)

    Article  CAS  Google Scholar 

  14. Wherry, E. J. et al. Lineage relationship and protective immunity of memory CD8 T cell subsets. Nature Immunol. 4, 225–234 (2003)

    Article  CAS  Google Scholar 

  15. Sarkar, S. et al. Functional and genomic profiling of effector CD8 T cell subsets with distinct memory fates. J. Exp. Med. 205, 625–640 (2008)

    Article  CAS  Google Scholar 

  16. Joshi, N. S. et al. Inflammation directs memory precursor and short-lived effector CD8(+) T cell fates via the graded expression of T-bet transcription factor. Immunity 27, 281–295 (2007)

    Article  CAS  Google Scholar 

  17. Grayson, J. M., Zajac, A. J., Altman, J. D. & Ahmed, R. Cutting edge: increased expression of Bcl-2 in antigen-specific memory CD8+ T cells. J. Immunol. 164, 3950–3954 (2000)

    Article  CAS  Google Scholar 

  18. Storni, T. et al. Nonmethylated CG motifs packaged into virus-like particles induce protective cytotoxic T cell responses in the absence of systemic side effects. J. Immunol. 172, 1777–1785 (2004)

    Article  CAS  Google Scholar 

  19. Ohtani, M. et al. Mammalian target of rapamycin and glycogen synthase kinase 3 differentially regulate lipopolysaccharide-induced interleukin-12 production in dendritic cells. Blood 112, 635–643 (2008)

    Article  CAS  Google Scholar 

  20. Weichhart, T. et al. The TSC-mTOR signaling pathway regulates the innate inflammatory response. Immunity 29, 565–577 (2008)

    Article  CAS  Google Scholar 

  21. Hara, K. et al. Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action. Cell 110, 177–189 (2002)

    Article  CAS  Google Scholar 

  22. Kim, D. H. et al. mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 110, 163–175 (2002)

    Article  CAS  Google Scholar 

  23. Kaech, S. M. & Wherry, E. J. Heterogeneity and cell-fate decisions in effector and memory CD8(+) T cell differentiation during viral infection. Immunity 27, 393–405 (2007)

    Article  CAS  Google Scholar 

  24. Murali-Krishna, K. et al. Counting antigen-specific CD8 T cells: a reevaluation of bystander activation during viral infection. Immunity 8, 177–187 (1998)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank B. T. Konieczny for technical assistance; D. Garber for providing us with the MVA; R. Amara for help developing rhesus macaque assays; W. Hahn for providing pMKO.1 GFP vector; and E. Strobert and P. L. Turner for technical assistance. This work was supported by NIH grants AI030048 (to R.A.) and N01-AI-50025 and AI040519 (to C.P.L).

Author Contributions K.A. and R.A. designed mouse experiments; A.P.T., V.O.S., S.G. and C.P.L designed macaque experiments; K.A. performed mouse experiments; A.P.T., V.O.S. and S.G. performed macaque experiments; K.A. and R.A. analysed mouse data; K.A., A.P.T., V.O.S., S.G. and C.P.L analysed macaque data; S.A.K. and M.F.B. provided critical reagents; and K.A. and R.A. wrote the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafi Ahmed.

Supplementary information

Supplementary Figures

This file contains Supplementary Figures 1-10 with Legends (PDF 1920 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Araki, K., Turner, A., Shaffer, V. et al. mTOR regulates memory CD8 T-cell differentiation. Nature 460, 108–112 (2009). https://doi.org/10.1038/nature08155

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature08155

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing