Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Partial penetrance facilitates developmental evolution in bacteria

This article has been updated


Development normally occurs similarly in all individuals within an isogenic population, but mutations often affect the fates of individual organisms differently1,2,3,4. This phenomenon, known as partial penetrance, has been observed in diverse developmental systems. However, it remains unclear how the underlying genetic network specifies the set of possible alternative fates and how the relative frequencies of these fates evolve5,6,7,8. Here we identify a stochastic cell fate determination process that operates in Bacillus subtilis sporulation mutants and show how it allows genetic control of the penetrance of multiple fates. Mutations in an intercompartmental signalling process generate a set of discrete alternative fates not observed in wild-type cells, including rare formation of two viable ‘twin’ spores, rather than one within a single cell. By genetically modulating chromosome replication and septation, we can systematically tune the penetrance of each mutant fate. Furthermore, signalling and replication perturbations synergize to significantly increase the penetrance of twin sporulation. These results suggest a potential pathway for developmental evolution between monosporulation and twin sporulation through states of intermediate twin penetrance. Furthermore, time-lapse microscopy of twin sporulation in wild-type Clostridium oceanicum shows a strong resemblance to twin sporulation in these B. subtilis mutants9,10. Together the results suggest that noise can facilitate developmental evolution by enabling the initial expression of discrete morphological traits at low penetrance, and allowing their stabilization by gradual adjustment of genetic parameters.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Partial penetrance in the developmental process of sporulation.
Figure 2: Time-lapse movies reveal alternative developmental pathways in spoIIR PP signalling mutants.
Figure 3: Noise and gene expression control cell fate in a hierarchical fashion.
Figure 4: Evolution of twin sporulation.

Change history

  • 23 July 2009

    The spelling of O.C.L's name was corrected on 23 July 2009.


  1. Horvitz, H. R. & Sulston, J. E. Isolation and genetic characterization of cell-lineage mutants of the nematode Caenorhabditis elegans . Genetics 96, 435–454 (1980)

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Queitsch, C., Sangster, T. A. & Lindquist, S. Hsp90 as a capacitor of phenotypic variation. Nature 417, 618–624 (2002)

    Article  ADS  CAS  Google Scholar 

  3. Sangster, T. A. et al. HSP90 affects the expression of genetic variation and developmental stability in quantitative traits. Proc. Natl Acad. Sci. USA 105, 2963–2968 (2008)

    Article  ADS  CAS  Google Scholar 

  4. Coote, J. G. Sporulation in Bacillus subtilis. Characterization of oligosporogenous mutants and comparison of their phenotypes with those of asporogenous mutants. J. Gen. Microbiol. 71, 1–15 (1972)

    Article  CAS  Google Scholar 

  5. Rutherford, S. L. & Henikoff, S. Quantitative epigenetics. Nature Genet. 33, 6–8 (2003)

    Article  CAS  Google Scholar 

  6. Felix, M. A. & Wagner, A. Robustness and evolution: concepts, insights and challenges from a developmental model system. Heredity 100, 132–140 (2008)

    Article  Google Scholar 

  7. West-Eberhard, M. J. Developmental plasticity and the origin of species differences. Proc. Natl Acad. Sci. USA 102 (suppl. 1). 6543–6549 (2005)

    Article  ADS  CAS  Google Scholar 

  8. Kirschner, M. & Gerhart, J. The Plausibility of Life: Resolving Darwin’s Dilemma 71–108 (Yale Univ. Press, 2005)

    Google Scholar 

  9. Smith, L. D. Clostridium oceanicum, sp. n., a sporeforming anaerobe isolated from marine sediments. J. Bacteriol. 103, 811–813 (1970)

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Angert, E. R. Alternatives to binary fission in bacteria. Nature Rev. Microbiol. 3, 214–224 (2005)

    Article  CAS  Google Scholar 

  11. Hilbert, D. W. & Piggot, P. J. Compartmentalization of gene expression during Bacillus subtilis spore formation. Microbiol. Mol. Biol. Rev. 68, 234–262 (2004)

    Article  CAS  Google Scholar 

  12. Khvorova, A., Chary, V. K., Hilbert, D. W. & Piggot, P. J. The chromosomal location of the Bacillus subtilis sporulation gene spoIIR is important for its function. J. Bacteriol. 182, 4425–4429 (2000)

    Article  CAS  Google Scholar 

  13. Zupancic, M. L., Tran, H. & Hofmeister, A. E. Chromosomal organization governs the timing of cell type-specific gene expression required for spore formation in Bacillus subtilis . Mol. Microbiol. 39, 1471–1481 (2001)

    Article  CAS  Google Scholar 

  14. Piggot, P. J. & Coote, J. G. Genetic aspects of bacterial endospore formation. Bacteriol. Rev. 40, 908–962 (1976)

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Karow, M. L., Glaser, P. & Piggot, P. J. Identification of a gene, spoIIR, that links the activation of sigma E to the transcriptional activity of sigma F during sporulation in Bacillus subtilis . Proc. Natl Acad. Sci. USA 92, 2012–2016 (1995)

    Article  ADS  CAS  Google Scholar 

  16. Eichenberger, P., Fawcett, P. & Losick, R. A three-protein inhibitor of polar septation during sporulation in Bacillus subtilis . Mol. Microbiol. 42, 1147–1162 (2001)

    Article  CAS  Google Scholar 

  17. Pogliano, J. et al. A vital stain for studying membrane dynamics in bacteria: a novel mechanism controlling septation during Bacillus subtilis sporulation. Mol. Microbiol. 31, 1149–1159 (1999)

    Article  CAS  Google Scholar 

  18. Dworkin, J. & Losick, R. Developmental commitment in a bacterium. Cell 121, 401–409 (2005)

    Article  CAS  Google Scholar 

  19. Paredes, C. J., Alsaker, K. V. & Papoutsakis, E. T. A comparative genomic view of clostridial sporulation and physiology. Nature Rev. Microbiol. 3, 969–978 (2005)

    Article  CAS  Google Scholar 

  20. Angert, E. R. & Losick, R. M. Propagation by sporulation in the guinea pig symbiont Metabacterium polyspora . Proc. Natl Acad. Sci. USA 95, 10218–10223 (1998)

    Article  ADS  CAS  Google Scholar 

  21. Dworkin, J. & Losick, R. Does RNA polymerase help drive chromosome segregation in bacteria? Proc. Natl Acad. Sci. USA 99, 14089–14094 (2002)

    Article  ADS  CAS  Google Scholar 

  22. Lee, P. S., Lin, D. C., Moriya, S. & Grossman, A. D. Effects of the chromosome partitioning protein Spo0J (ParB) on oriC positioning and replication initiation in Bacillus subtilis . J. Bacteriol. 185, 1326–1337 (2003)

    Article  CAS  Google Scholar 

  23. Ben-Yehuda, S. & Losick, R. Asymmetric cell division in B. subtilis involves a spiral-like intermediate of the cytokinetic protein FtsZ. Cell 109, 257–266 (2002)

    Article  CAS  Google Scholar 

  24. Noirot-Gros, M. F. et al. Functional dissection of YabA, a negative regulator of DNA replication initiation in Bacillus subtilis . Proc. Natl Acad. Sci. USA 103, 2368–2373 (2006)

    Article  ADS  CAS  Google Scholar 

  25. Keis, S., Shaheen, R. & Jones, D. T. Emended descriptions of Clostridium acetobutylicum and Clostridium beijerinckii, and descriptions of Clostridium saccharoperbutylacetonicum sp. nov. and Clostridium saccharobutylicum sp. nov. Int. J. Syst. Evol. Microbiol. 51, 2095–2103 (2001)

    Article  CAS  Google Scholar 

  26. Waddington, C. H. Canalization of development and the inheritance of acquired characters. Nature 150, 563–565 (1942)

    Article  ADS  Google Scholar 

  27. Rutherford, S., Hirate, Y. & Swalla, B. J. The Hsp90 capacitor, developmental remodeling, and evolution: the robustness of gene networks and the curious evolvability of metamorphosis. Crit. Rev. Biochem. Mol. Biol. 42, 355–372 (2007)

    Article  CAS  Google Scholar 

  28. Youngman, P., Perkins, J. B. & Losick, R. Construction of a cloning site near one end of Tn917 into which foreign DNA may be inserted without affecting transposition in Bacillus subtilis or expression of the transposon-borne erm gene. Plasmid 12, 1–9 (1984)

    Article  CAS  Google Scholar 

  29. Harwood, C. R. & Cutting, S. M. Molecular Biological Methods for Bacillus (Wiley, 1990)

    Google Scholar 

  30. Rosenfeld, N., Young, J. W., Alon, U., Swain, P. S. & Elowitz, M. B. Gene regulation at the single-cell level. Science 307, 1962–1965 (2005)

    Article  ADS  CAS  Google Scholar 

  31. Suel, G. M., Garcia-Ojalvo, J., Liberman, L. M. & Elowitz, M. B. An excitable gene regulatory circuit induces transient cellular differentiation. Nature 440, 545–550 (2006)

    Article  ADS  Google Scholar 

  32. Suel, G. M., Kulkarni, R. P., Dworkin, J., Garcia-Ojalvo, J. & Elowitz, M. B. Tunability and noise dependence in differentiation dynamics. Science 315, 1716–1719 (2007)

    Article  ADS  Google Scholar 

  33. Becker, E. C. & Pogliano, K. Cell-specific SpoIIIE assembly and DNA translocation polarity are dictated by chromosome orientation. Mol. Microbiol. 66, 1066–1079 (2007)

    Article  CAS  Google Scholar 

  34. Zeigler, D. R. et al. The origins of 168, W23, and other Bacillus subtilis legacy strains. J. Bacteriol. 190, 6983–6995 (2008)

    Article  CAS  Google Scholar 

Download references


We thank J. Leadbetter and E. Matson for their help with the anaerobic species. We thank R. Losick, A. Grossman, M. Fujita and A. Arkin for strains and advice. We thank R. Kishony, D. Jones, Wolfgang Schwarz, G. Suel, J.-G. Ojalvo, B. Shraiman, J. Levine, J. C. W. Locke, D. Sprinzak, L. Cai and other members of M.B.E. and P.J.P. labs for helpful discussions. Work in the P.J.P.’s lab was supported by Public Health Service Grant GM43577 from the US National Institutes of Health (NIH). Work in M.B.E.’s lab was supported by NIH grants R01GM079771 and P50 GM068763, US National Science Foundation CAREER Award 0644463 and the Packard Foundation. A.E. was supported by the International Human Frontier Science Organization and the European Molecular Biology Organization.

Author Contributions A.E., V.K.C., J.D., P.J.P. and M.B.E. designed the research; A.E., V.K.C., P.X., M.E.F. and O.C.L. performed the experiments; A.E. and V.K.C. analysed the results; and A.E. and M.B.E. wrote the paper.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Michael B. Elowitz.

Supplementary information

Supplementary Information

This file contains Supplementary Methods, Supplementary Figures S1-S13 with Legends, Supplementary References and Supplementary Legends for Movies 1 and 2. (PDF 2964 kb)

Supplementary Movie 1

This movie shows the partial penetrance of a spoIIRdelay microcolony growing and sporulating (strain AES528) - see file s1 for full legend. (MOV 7674 kb)

Supplementary Movie 2

This movie shows C. oceanicum sporulation - see file s1 for full legend. (MOV 10286 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Eldar, A., Chary, V., Xenopoulos, P. et al. Partial penetrance facilitates developmental evolution in bacteria. Nature 460, 510–514 (2009).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing