Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The role of black holes in galaxy formation and evolution

Abstract

Virtually all massive galaxies, including our own, host central black holes ranging in mass from millions to billions of solar masses. The growth of these black holes releases vast amounts of energy that powers quasars and other weaker active galactic nuclei. A tiny fraction of this energy, if absorbed by the host galaxy, could halt star formation by heating and ejecting ambient gas. A central question in galaxy evolution is the degree to which this process has caused the decline of star formation in large elliptical galaxies, which typically have little cold gas and few young stars, unlike spiral galaxies.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: The galaxy bimodality.
Figure 2: A computer simulation of the formation of an elliptical galaxy.
Figure 3: The entropy of the intracluster medium in spherical shells of radius r.
Figure 4: Optical, radio and X-ray images of the Perseus cluster.
Figure 5: Cooling, heating, and black hole accretion rates.

References

  1. Kormendy, J. in The Nearest Active Galaxies (eds Beckman, J., Colina, L. & Netzer, H.) 197–218 (Consejo Superior de Investigaciones Científicas, Madrid, 1993)

    Google Scholar 

  2. Magorrian, J. et al. The demography of massive dark objects in galaxy centers. Astron. J. 15, 2285–2305 (1998)

    Article  ADS  Google Scholar 

  3. Marconi, A. & Hunt, L. The relation between black hole mass, bulge mass, and near-infrared luminosity. Astrophys. J. 589, 21–24 (2003)

    Article  ADS  Google Scholar 

  4. Ferrarese, L. & Merritt, D. A fundamental relation between supermassive black holes and their host galaxies. Astrophys. J. 539, 9–12 (2000)

    Article  ADS  Google Scholar 

  5. Gebhardt, K. et al. A relationship between nuclear black hole mass and galaxy velocity dispersion. Astrophys. J. 539, 13–16 (2000)

    Article  ADS  Google Scholar 

  6. Cattaneo, A. & Bernardi, M. The quasar epoch and the stellar ages of early-type galaxies. Mon. Not. R. Astron. Soc. 344, 45–52 (2003)

    Article  ADS  Google Scholar 

  7. Hopkins, P. F. Determining the properties and evolution of red galaxies from the quasar luminosity function. Astrophys. J. 163 (Suppl.). 50–79 (2006)

    CAS  Article  Google Scholar 

  8. Bardeen, J. M. Kerr metric black holes. Nature 226, 64–65 (1970)

    CAS  Article  ADS  PubMed  Google Scholar 

  9. Krolik, J. H. Active Galactic Nuclei: From the Central Black Hole to the Galactic Environment (Princeton Univ. Press, 1999)

    Google Scholar 

  10. Cattaneo, A. & Best, P. N. On the jet contribution to the AGN cosmic energy budget. Mon. Not. R. Astron. Soc. 395, 518–523 (2009)

    CAS  Article  ADS  Google Scholar 

  11. White, S. D. M. & Rees, M. J. Core condensation in heavy halos — a two-stage theory for galaxy formation and clustering. Mon. Not. R. Astron. Soc. 183, 341–358 (1978)

    Article  ADS  Google Scholar 

  12. Blumenthal, G. R., Faber, S. M., Primack, J. R. & Rees, M. J. Formation of galaxies and large-scale structure with cold dark matter. Nature 311, 517–525 (1984)

    CAS  Article  ADS  Google Scholar 

  13. White, S. D. & Frenk, C. S. Galaxy formation through hierarchical clustering. Astrophys. J. 379, 52–79 (1991)

    Article  ADS  Google Scholar 

  14. Rees, M. J. & Ostriker, J. P. Cooling, dynamics and fragmentation of massive gas clouds — clues to the masses and radii of galaxies and clusters. Mon. Not. R. Astron. Soc. 179, 541–559 (1977)

    CAS  Article  ADS  Google Scholar 

  15. Silk, J. On the fragmentation of cosmic gas clouds. I — The formation of galaxies and the first generation of stars. Astrophys. J. 211, 638–648 (1977)

    CAS  Article  ADS  Google Scholar 

  16. Binney, J. The physics of dissipational galaxy formation. Astrophys. J. 215, 483–491 (1977)

    CAS  Article  ADS  Google Scholar 

  17. Keres, D. et al. How do galaxies get their gas? Mon. Not. R. Astron. Soc. 363, 2–28 (2005)

    CAS  Article  ADS  Google Scholar 

  18. Dekel, A. & Birnboim, Y. Galaxy bimodality due to cold flows and shock heating. Mon. Not. R. Astron. Soc. 368, 39–55 (2006)

    Article  CAS  Google Scholar 

  19. Fall, S. M. & Efstathiou, G. Formation and rotation of disc galaxies with haloes. Mon. Not. R. Astron. Soc. 193, 189–206 (1980)

    Article  ADS  Google Scholar 

  20. Steinmetz, M. Numerical simulations of galaxy formation. Astrophys. Space Sci. 269, 513–532 (1999)

    Article  ADS  Google Scholar 

  21. Dekel, A. et al. Cold streams in early massive hot haloes as the main mode of galaxy formation. Nature 457, 451–454 (2009)

    CAS  Article  ADS  PubMed  Google Scholar 

  22. Toomre, A. & Toomre, J. Galactic bridges and tails. Astrophys. J. 178, 623–666 (1972)

    Article  ADS  Google Scholar 

  23. Sanders, D. B. et al. Ultraluminous infrared galaxies and the origin of quasars. Astrophys. J. 325, 74–91 (1988)

    CAS  Article  ADS  Google Scholar 

  24. Nardini, E. et al. Spectral decomposition of starbursts and AGNs in 5–8 micron Spitzer IRS spectra of local ULIRGs. Mon. Not. R. Astron. Soc. 385, 130L–134L (2008)

    Article  ADS  Google Scholar 

  25. Hutchings, J. B. & Campbell, B. Are QSOs activated by interactions between galaxies? Nature 303, 584–588 (1983)

    Article  ADS  Google Scholar 

  26. Dunlop, J. S. et al. Quasars, their host galaxies and their central black holes. Mon. Not. R. Astron. Soc. 340, 1095–1135 (2003)

    Article  ADS  Google Scholar 

  27. Bennert, N. et al. Evidence for merger remnants in early-type host galaxies of low-redshift QSOs. Astrophys. J. 677, 846–867 (2008)

    CAS  Article  ADS  Google Scholar 

  28. Arav, N. et al. HST STIS observations of PG0946+301: the highest quality spectrum of a BALQSO. Astrophys. J. 561, 118–130 (2001)

    CAS  Article  ADS  Google Scholar 

  29. de Kool, M. et al. Keck HIRES observations of the QSO FIRST J104459.6+365605: evidence for a large-scale outflow. Astrophys. J. 548, 609–623 (2001)

    CAS  Article  ADS  Google Scholar 

  30. Reeves, J. N., O’Brien, P. T. & Ward, M. J. A massive X-ray outflow from the quasar PDS456. Astrophys. J. 593, 65–68 (2004)

    Article  Google Scholar 

  31. Chartas, G., Brandt, W. N., Gallagher, S. C. & Proga, D. XMM-Newton and Chandra spectroscopy of the variable high-energy absorption of PG 1115+080: refined outflow constraints. Astron. J. 133, 1849–1860 (2007)

    CAS  Article  ADS  Google Scholar 

  32. Nesvadba, N. P. H. et al. Evidence for powerful AGN winds at high redshift: dynamics of galactic outflows in radio galaxies during the “Quasar Era”. Astron. Astrophys. 491, 407–424 (2008)

    CAS  Article  ADS  Google Scholar 

  33. Proga, D. in The Central Engine of Active Galactic Nuclei (eds Ho, L. C. & Wang, J. M.) 267–276 (ASP Conf. Ser. Vol. 373, Astronomical Society of the Pacific, 2007)

    Google Scholar 

  34. Silk, J. Ultraluminous starbursts from supermassive black hole-induced outflows. Mon. Not. R. Astron. Soc. 364, 1337–1342 (2005)

    Article  ADS  Google Scholar 

  35. Silk, J. & Rees, M. J. Quasars and galaxy formation. Astron. Astrophys. 331, 1L–4L (1998)The first article to propose that the M BH σ is determined by feedback.

    ADS  Google Scholar 

  36. King, A. Black holes, galaxy formation, and the MBH-σ relation. Astrophys. J. 596, 27–29 (2003)

    Article  ADS  Google Scholar 

  37. Murray, N., Quataert, E. & Thompson, T. A. On the maximum luminosity of galaxies and their central black holes: feedback from momentum-driven winds. Astrophys. J. 618, 569–585 (2005)

    Article  ADS  Google Scholar 

  38. Fabian, A. C., Celotti, A. & Erlund, M. C. Radiative pressure feedback by a quasar in a galactic bulge. Mon. Not. R. Astron. Soc. 373, 16L–20L (2006)Assuming that the growth of the black hole is limited by radiation pressure feedback yields the observed relation M BH σ4.

    Article  ADS  Google Scholar 

  39. Robertson, B. et al. The evolution of the MBH-σ relation. Astrophys. J. 641, 90–102 (2006)

    CAS  Article  ADS  Google Scholar 

  40. Springel, V., Di Matteo, T. & Hernquist, L. Black holes in galaxy mergers: the formation of red elliptical galaxies. Astrophys. J. 620, 79–82 (2005)Without AGN feedback, the remnants of gas-rich mergers remain blue for several gigayears.

    Article  ADS  Google Scholar 

  41. Hopkins, P. F. et al. A unified, merger-driven model of the origin of starbursts, quasars, the cosmic X-ray background, supermassive black holes, and galaxy spheroids. Astrophys. J. 163 (Suppl.). 1–49 (2006)

    CAS  Article  Google Scholar 

  42. Thomas, D., Maraston, C., Bender, R. & Mendes de Oliveira, C. The epochs of early-type galaxy formation as a function of environment. Astrophys. J. 621, 673–694 (2005)

    CAS  Article  ADS  Google Scholar 

  43. Böhringer, H. et al. A ROSAT HRI study of the interaction of the X-ray-emitting gas and radio lobes of NGC 1275. Mon. Not. R. Astron. Soc. 264, 25L–28L (1993)

    Article  ADS  Google Scholar 

  44. Forman, W. et al. Reflections of active galactic nucleus outbursts in the gaseous atmosphere of M87. Astrophys. J. 635, 894–906 (2005)

    Article  ADS  Google Scholar 

  45. Fabian, A. C. et al. A very deep Chandra observation of the Perseus cluster: shocks, ripples and conduction. Mon. Not. R. Astron. Soc. 366, 417–428 (2006)Refs 43–45 show direct images of how radio galaxies can affect the intracluster gas.

    CAS  Article  ADS  Google Scholar 

  46. Rafferty, D. A., McNamara, B. R., Nulsen, P. E. J. & Wise, M. W. The feedback-regulated growth of black holes and bulges through gas accretion and starbursts in cluster central dominant galaxies. Astrophys. J. 652, 216–231 (2006)The energy that black holes inject into the lobes of radio galaxies is approximately equal to the energy that is needed to offset cooling.

    CAS  Article  ADS  Google Scholar 

  47. Churazov, E., Sunyaev, R., Forman, W. & Boehringer, H. Cooling flows as a calorimeter of active galactic nucleus mechanical power. Mon. Not. R. Astron. Soc. 332, 729–734 (2002)Black holes sense the entropy of the surrounding gas and adjust their accretion rate to offset cooling.

    CAS  Article  ADS  Google Scholar 

  48. Cattaneo, A. & Teyssier, R. AGN self-regulation in cooling flow clusters. Mon. Not. R. Astron. Soc. 376, 1547–1556 (2007)

    CAS  Article  ADS  Google Scholar 

  49. Ruszkowski, M., Brueggen, M. & Begelman, M. Cluster heating by viscous dissipation of sound waves. Astrophys. J. 611, 158–163 (2004)

    Article  ADS  Google Scholar 

  50. Binney, J. & Tabor, G. Evolving cooling flows. Mon. Not. R. Astron. Soc. 276, 663–678 (1995)First introduction of black hole feedback as a possible solution to the cooling flow problem.

    Article  ADS  Google Scholar 

  51. Ciotti, L. & Ostriker, J. P. Radiative feedback from massive black holes in elliptical galaxies: AGN flaring and central starburst fueled by recycled gas. Astrophys. J. 665, 1038–1056 (2007)Standard reference for radiative feedback and its role in the maintenance of elliptical galaxies.

    CAS  Article  ADS  Google Scholar 

  52. Peterson, J. R. & Fabian, A. C. X-ray spectroscopy of cooling clusters. Phys. Rep. 427, 1–39 (2006)

    Article  ADS  Google Scholar 

  53. McNamara, B. R. & Nulsen, P. E. J. Heating hot atmospheres with active galactic nuclei. Annu. Rev. Astron. Astrophys. 45, 117–175 (2007)

    Article  ADS  Google Scholar 

  54. Croton, D. et al. The many lives of active galactic nuclei: cooling flows, black holes and the luminosities and colours of galaxies. Mon. Not. R. Astron. Soc. 365, 11–28 (2006)

    Article  ADS  Google Scholar 

  55. Bower, R. et al. Breaking the hierarchy of galaxy formation. Mon. Not. R. Astron. Soc. 370, 645–655 (2006)

    CAS  Article  ADS  Google Scholar 

  56. Cattaneo, A. et al. Modelling the galaxy bimodality: shutdown above a critical halo mass. Mon. Not. R. Astron. Soc. 370, 1651–1665 (2006)Refs 54–56 show that the black hole–galaxy co-evolution contains an initial rapid growth phase followed by a ‘maintenance’ phase, in which black holes couple to the hot gas to suppress star formation.

    CAS  Article  ADS  Google Scholar 

  57. Kormendy, J., Fisher, D. B., Cornell, M. E. & Bender, R. Structure and formation of elliptical and spheroidal galaxies. Astrophys. J. Suppl. Ser. (in the press); preprint at 〈http://arxiv.org/abs/0810.1681〉 (2008)

  58. Lutz, D. et al. Star formation in the hosts of high-z QSOs: evidence from Spitzer PAH detections. Astrophys. J. 684, 853–861 (2008)

    Article  ADS  Google Scholar 

  59. Heckman, T. M. & Kauffmann, G. The host galaxies of AGN in the Sloan Digital Sky Survey. N. Astron. Rev. 50, 677–684 (2006)

    Article  ADS  Google Scholar 

  60. Tremonti, C. A., Moustakas, J. & Diamond-Stanic, A. M. The discovery of 1000 km s-1 outflows in massive poststarburst galaxies at z0.6. Astrophys. J. 663, 77–80 (2007)Most post-starburst galaxies contain winds of presumably AGN origin.

    Article  ADS  Google Scholar 

  61. Schawinski, K. et al. Observational evidence for AGN feedback in early-type galaxies. Mon. Not. R. Astron. Soc. 382, 1415–1431 (2007)

    CAS  Article  ADS  Google Scholar 

  62. Quintero, A. et al. Selection and photometric properties of K+A galaxies. Astrophys. J. 602, 190–199 (2004)

    CAS  Article  ADS  Google Scholar 

  63. Chen, Y. et al. Statistics of X-ray observables for the cooling-core and non-cooling core galaxy clusters. Astron. Astrophys. 466, 805–812 (2007)

    CAS  Article  ADS  Google Scholar 

  64. Ponman, T. J., Bourner, P. D. J., Ebeling, H. & Boehringer, H. A. ROSAT survey of Hickson’s compact galaxy groups. Mon. Not. R. Astron. Soc. 283, 690–708 (1996)

    Article  ADS  Google Scholar 

  65. Edge, A. C. & Stewart, G. C. EXOSAT observations of clusters of galaxies. I — The X-ray data. II — X-ray to optical correlations. Mon. Not. R. Astron. Soc. 252, 414–441 (1991)

    CAS  Article  ADS  Google Scholar 

  66. Evrard, A. E. & Henry, J. P. Expectations for X-ray cluster observations by the ROSAT satellite. Astrophys. J. 383, 95–103 (1991)

    Article  ADS  Google Scholar 

  67. Kaiser, N. Evolution of clusters of galaxies. Astrophys. J. 383, 104–111 (1991)

    Article  ADS  Google Scholar 

  68. Lloyd-Davies, E. J., Ponman, T. J. & Cannon, D. B. The entropy and energy of intergalactic gas in galaxy clusters. Mon. Not. R. Astron. Soc. 315, 689–702 (2000)

    Article  ADS  Google Scholar 

  69. Valageas, P. & Silk, J. The entropy history of the universe. Astron. Astrophys. 350, 725–742 (1999)

    CAS  ADS  Google Scholar 

  70. Oh, S. P. & Benson, A. J. Entropy injection as a global feedback mechanism. Mon. Not. R. Astron. Soc. 342, 664–672 (2003)

    Article  ADS  Google Scholar 

  71. McCarthy, I. G., Babul, A., Bower, R. G. & Balogh, M. L. Towards a holistic view of the heating and cooling of the intracluster medium. Mon. Not. R. Astron. Soc. 386, 1309–1331 (2008)

    CAS  Article  ADS  Google Scholar 

  72. Burns, J. O. The radio properties of cD galaxies in Abell clusters. I — an X-ray selected sample. Astron. J. 99, 14–30 (1990)

    CAS  Article  ADS  Google Scholar 

  73. Best, P. N. et al. On the prevalence of radio-loud active galactic nuclei in brightest cluster galaxies: implications for AGN heating of cooling flows. Mon. Not. R. Astron. Soc. 379, 894–908 (2007)70% of cluster cD galaxies are radio galaxies: note X-ray cavities are present in a similar percentage of cool core clusters (ref. 76).

    Article  ADS  Google Scholar 

  74. Blandford, R. D. & Begelman, M. C. On the fate of gas accreting at a low rate on to a black hole. Mon. Not. R. Astron. Soc. 303, 1L–5L (1999)

    Article  ADS  Google Scholar 

  75. Dunn, R. J. H. & Fabian, A. C. Investigating AGN heating in a sample of nearby clusters. Mon. Not. R. Astron. Soc. 373, 959–971 (2006)

    CAS  Article  ADS  Google Scholar 

  76. Nusser, A., Silk, J. & Babul, A. Suppressing cluster cooling flows by self-regulated heating from a spatially distributed population of active galactic nuclei. Mon. Not. R. Astron. Soc. 373, 739–746 (2006)

    CAS  Article  ADS  Google Scholar 

  77. Binney, J., Bibi, F. A. & Omma, H. Bubbles as tracers of heat input to cooling flows. Mon. Not. R. Astron. Soc. 377, 142–146 (2007)

    Article  ADS  Google Scholar 

  78. Bondi, H. On spherically symmetrical accretion. Mon. Not. R. Astron. Soc. 112, 195–204 (1952)

    Article  ADS  MathSciNet  Google Scholar 

  79. Allen, S. W. et al. The relation between accretion rate and jet power in X-ray luminous elliptical galaxies. Mon. Not. R. Astron. Soc. 372, 21–30 (2006)

    CAS  Article  ADS  Google Scholar 

  80. Magliocchetti, M. & Brueggen, M. The interplay between radio galaxies and cluster environment. Mon. Not. R. Astron. Soc. 379, 260–274 (2007)The entropy of the intracluster medium is higher in clusters with extended radio sources.

    CAS  Article  ADS  Google Scholar 

  81. Voit, G. M. & Donahue, M. An observationally motivated framework for AGN heating of cluster cores. Astrophys. J. 634, 955–963 (2005)

    CAS  Article  ADS  Google Scholar 

  82. Mathews, W. G. & Brighenti, F. Creation of X-ray cavities in clusters with cosmic rays. Astrophys. J. 660, 1137–1145 (2006)

    Article  ADS  Google Scholar 

  83. Salomé, P. et al. Cold molecular gas in the Perseus cluster core. Astron. Astrophys. 454, 437–445 (2006)

    Article  ADS  CAS  Google Scholar 

  84. Mathews, W. G. & Baker, J. C. Galactic winds. Astrophys. J. 170, 241–260 (1971)

    CAS  Article  ADS  Google Scholar 

  85. Helmboldt, J. F., Taylor, G. B., Walker, R. C. & Blandford, R. D. A statistical description of AGN jet evolution from the VLBA Imaging and Polarimetry Survey (VIPS). Astrophys. J. 681, 897–904 (2008)

    CAS  Article  ADS  Google Scholar 

  86. Bildfell, C., Hoekstra, H., Babul, A. & Mahdavi, A. Resurrecting the red from the dead: optical properties of BCGs in X-ray luminous clusters. Mon. Not. R. Astron. Soc. 389, 1637–1654 (2008)

    CAS  Article  ADS  Google Scholar 

  87. Best, P. N. et al. The host galaxies of radio-loud active galactic nuclei: mass dependences, gas cooling and active galactic nuclei feedback. Mon. Not. R. Astron. Soc. 362, 25–40 (2005)

    Article  ADS  Google Scholar 

  88. Best, P. N., Kaiser, C. M., Heckman, T. M. & Kauffmann, G. AGN-controlled cooling in elliptical galaxies. Mon. Not. R. Astron. Soc. 368, 67L–71L (2007)

    Article  ADS  Google Scholar 

  89. Dekel, A. & Birnboim, Y. Gravitational quenching in massive galaxies and clusters by clumpy accretion. Mon. Not. R. Astron. Soc. 383, 119–138 (2008)

    CAS  Article  ADS  Google Scholar 

  90. Khochfar, S. & Ostriker, J. P. O. Adding environmental gas physics to the semianalytic method for galaxy formation: gravitational heating. Astrophys. J. 680, 54–69 (2008)

    CAS  Article  ADS  Google Scholar 

  91. Naab, T., Johansson, P. H., Ostriker, J. P. & Efstathiou, G. Formation of early-type galaxies from cosmological initial conditions. Astrophys. J. 658, 710–720 (2007)

    CAS  Article  ADS  Google Scholar 

  92. Baldry, I. K. et al. Quantifying the bimodal color magnitude distribution of galaxies. Astrophys. J. 600, 681–694 (2004)

    Article  ADS  Google Scholar 

  93. Faber, S. M. et al. The centers of early-type galaxies with HST. IV. Central parameter relations. Astron. J. 114, 1771–1796 (1997)

    Article  ADS  Google Scholar 

  94. Naab, T., Khochfar, S. & Burkert, A. Properties of early type, dry galaxy mergers and the origin of massive elliptical galaxies. Astrophys. J. 636, 81–84 (2006)

    Article  ADS  Google Scholar 

  95. Cox, T. J. et al. The kinematic structure of merger remnants. Astrophys. J. 650, 791–811 (2006)

    Article  ADS  Google Scholar 

  96. Faber, S. M. et al. Galaxy luminosity functions to z1 from DEEP2 and COMBO-17: implications for red galaxy formation. Astrophys. J. 665, 265–294 (2007)

    CAS  Article  ADS  Google Scholar 

  97. Khalatyan, A. et al. Is AGN feedback necessary to form red elliptical galaxies? Mon. Not. R. Astron. Soc. 387, 13–30 (2008)

    CAS  Article  ADS  Google Scholar 

  98. Donahue, M., Horner, D. J., Cavagnolo, K. W. & Voit, G. M. Entropy profiles in the cores of cooling flow clusters of galaxies. Astrophys. J. 643, 730–750 (2006)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

A.C. thanks his wife A. Fylaktou for assistance in making the Review readable for a broader audience.

Author Contributions A.C. initiated the project, wrote the first draft, and had editorial control throughout. He chose to have many co-authors to show that the Review reflects consensus within the field. S.M.F. made a major contribution to the structure and content of the Review. J.B., A.D., J.K. and R.M. participated extensively in the writing of the manuscript, A.B., P.B., and M.B. contributed significantly to individual sections. A.K., A.M. and P.B. produced Figs 2, 3 and 4, respectively. The other authors contributed mainly by providing comments on drafts and by participating in scientific discussions in connection with: X-ray observations of galaxy clusters (A.C.F.), galaxy formation (C.S.F., M.S.), the interaction of radiation with the interstellar medium (H.N.), the interaction of quasar winds with the interstellar medium (J.S.), and quasar winds and host galaxies (L.W.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Cattaneo.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Cattaneo, A., Faber, S., Binney, J. et al. The role of black holes in galaxy formation and evolution. Nature 460, 213–219 (2009). https://doi.org/10.1038/nature08135

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature08135

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing