Abstract
Virtually all massive galaxies, including our own, host central black holes ranging in mass from millions to billions of solar masses. The growth of these black holes releases vast amounts of energy that powers quasars and other weaker active galactic nuclei. A tiny fraction of this energy, if absorbed by the host galaxy, could halt star formation by heating and ejecting ambient gas. A central question in galaxy evolution is the degree to which this process has caused the decline of star formation in large elliptical galaxies, which typically have little cold gas and few young stars, unlike spiral galaxies.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout





References
Kormendy, J. in The Nearest Active Galaxies (eds Beckman, J., Colina, L. & Netzer, H.) 197–218 (Consejo Superior de Investigaciones Científicas, Madrid, 1993)
Magorrian, J. et al. The demography of massive dark objects in galaxy centers. Astron. J. 15, 2285–2305 (1998)
Marconi, A. & Hunt, L. The relation between black hole mass, bulge mass, and near-infrared luminosity. Astrophys. J. 589, 21–24 (2003)
Ferrarese, L. & Merritt, D. A fundamental relation between supermassive black holes and their host galaxies. Astrophys. J. 539, 9–12 (2000)
Gebhardt, K. et al. A relationship between nuclear black hole mass and galaxy velocity dispersion. Astrophys. J. 539, 13–16 (2000)
Cattaneo, A. & Bernardi, M. The quasar epoch and the stellar ages of early-type galaxies. Mon. Not. R. Astron. Soc. 344, 45–52 (2003)
Hopkins, P. F. Determining the properties and evolution of red galaxies from the quasar luminosity function. Astrophys. J. 163 (Suppl.). 50–79 (2006)
Bardeen, J. M. Kerr metric black holes. Nature 226, 64–65 (1970)
Krolik, J. H. Active Galactic Nuclei: From the Central Black Hole to the Galactic Environment (Princeton Univ. Press, 1999)
Cattaneo, A. & Best, P. N. On the jet contribution to the AGN cosmic energy budget. Mon. Not. R. Astron. Soc. 395, 518–523 (2009)
White, S. D. M. & Rees, M. J. Core condensation in heavy halos — a two-stage theory for galaxy formation and clustering. Mon. Not. R. Astron. Soc. 183, 341–358 (1978)
Blumenthal, G. R., Faber, S. M., Primack, J. R. & Rees, M. J. Formation of galaxies and large-scale structure with cold dark matter. Nature 311, 517–525 (1984)
White, S. D. & Frenk, C. S. Galaxy formation through hierarchical clustering. Astrophys. J. 379, 52–79 (1991)
Rees, M. J. & Ostriker, J. P. Cooling, dynamics and fragmentation of massive gas clouds — clues to the masses and radii of galaxies and clusters. Mon. Not. R. Astron. Soc. 179, 541–559 (1977)
Silk, J. On the fragmentation of cosmic gas clouds. I — The formation of galaxies and the first generation of stars. Astrophys. J. 211, 638–648 (1977)
Binney, J. The physics of dissipational galaxy formation. Astrophys. J. 215, 483–491 (1977)
Keres, D. et al. How do galaxies get their gas? Mon. Not. R. Astron. Soc. 363, 2–28 (2005)
Dekel, A. & Birnboim, Y. Galaxy bimodality due to cold flows and shock heating. Mon. Not. R. Astron. Soc. 368, 39–55 (2006)
Fall, S. M. & Efstathiou, G. Formation and rotation of disc galaxies with haloes. Mon. Not. R. Astron. Soc. 193, 189–206 (1980)
Steinmetz, M. Numerical simulations of galaxy formation. Astrophys. Space Sci. 269, 513–532 (1999)
Dekel, A. et al. Cold streams in early massive hot haloes as the main mode of galaxy formation. Nature 457, 451–454 (2009)
Toomre, A. & Toomre, J. Galactic bridges and tails. Astrophys. J. 178, 623–666 (1972)
Sanders, D. B. et al. Ultraluminous infrared galaxies and the origin of quasars. Astrophys. J. 325, 74–91 (1988)
Nardini, E. et al. Spectral decomposition of starbursts and AGNs in 5–8 micron Spitzer IRS spectra of local ULIRGs. Mon. Not. R. Astron. Soc. 385, 130L–134L (2008)
Hutchings, J. B. & Campbell, B. Are QSOs activated by interactions between galaxies? Nature 303, 584–588 (1983)
Dunlop, J. S. et al. Quasars, their host galaxies and their central black holes. Mon. Not. R. Astron. Soc. 340, 1095–1135 (2003)
Bennert, N. et al. Evidence for merger remnants in early-type host galaxies of low-redshift QSOs. Astrophys. J. 677, 846–867 (2008)
Arav, N. et al. HST STIS observations of PG0946+301: the highest quality spectrum of a BALQSO. Astrophys. J. 561, 118–130 (2001)
de Kool, M. et al. Keck HIRES observations of the QSO FIRST J104459.6+365605: evidence for a large-scale outflow. Astrophys. J. 548, 609–623 (2001)
Reeves, J. N., O’Brien, P. T. & Ward, M. J. A massive X-ray outflow from the quasar PDS456. Astrophys. J. 593, 65–68 (2004)
Chartas, G., Brandt, W. N., Gallagher, S. C. & Proga, D. XMM-Newton and Chandra spectroscopy of the variable high-energy absorption of PG 1115+080: refined outflow constraints. Astron. J. 133, 1849–1860 (2007)
Nesvadba, N. P. H. et al. Evidence for powerful AGN winds at high redshift: dynamics of galactic outflows in radio galaxies during the “Quasar Era”. Astron. Astrophys. 491, 407–424 (2008)
Proga, D. in The Central Engine of Active Galactic Nuclei (eds Ho, L. C. & Wang, J. M.) 267–276 (ASP Conf. Ser. Vol. 373, Astronomical Society of the Pacific, 2007)
Silk, J. Ultraluminous starbursts from supermassive black hole-induced outflows. Mon. Not. R. Astron. Soc. 364, 1337–1342 (2005)
Silk, J. & Rees, M. J. Quasars and galaxy formation. Astron. Astrophys. 331, 1L–4L (1998)The first article to propose that the M BH – σ is determined by feedback.
King, A. Black holes, galaxy formation, and the MBH-σ relation. Astrophys. J. 596, 27–29 (2003)
Murray, N., Quataert, E. & Thompson, T. A. On the maximum luminosity of galaxies and their central black holes: feedback from momentum-driven winds. Astrophys. J. 618, 569–585 (2005)
Fabian, A. C., Celotti, A. & Erlund, M. C. Radiative pressure feedback by a quasar in a galactic bulge. Mon. Not. R. Astron. Soc. 373, 16L–20L (2006)Assuming that the growth of the black hole is limited by radiation pressure feedback yields the observed relation M BH ∝ σ4.
Robertson, B. et al. The evolution of the MBH-σ relation. Astrophys. J. 641, 90–102 (2006)
Springel, V., Di Matteo, T. & Hernquist, L. Black holes in galaxy mergers: the formation of red elliptical galaxies. Astrophys. J. 620, 79–82 (2005)Without AGN feedback, the remnants of gas-rich mergers remain blue for several gigayears.
Hopkins, P. F. et al. A unified, merger-driven model of the origin of starbursts, quasars, the cosmic X-ray background, supermassive black holes, and galaxy spheroids. Astrophys. J. 163 (Suppl.). 1–49 (2006)
Thomas, D., Maraston, C., Bender, R. & Mendes de Oliveira, C. The epochs of early-type galaxy formation as a function of environment. Astrophys. J. 621, 673–694 (2005)
Böhringer, H. et al. A ROSAT HRI study of the interaction of the X-ray-emitting gas and radio lobes of NGC 1275. Mon. Not. R. Astron. Soc. 264, 25L–28L (1993)
Forman, W. et al. Reflections of active galactic nucleus outbursts in the gaseous atmosphere of M87. Astrophys. J. 635, 894–906 (2005)
Fabian, A. C. et al. A very deep Chandra observation of the Perseus cluster: shocks, ripples and conduction. Mon. Not. R. Astron. Soc. 366, 417–428 (2006)Refs 43–45 show direct images of how radio galaxies can affect the intracluster gas.
Rafferty, D. A., McNamara, B. R., Nulsen, P. E. J. & Wise, M. W. The feedback-regulated growth of black holes and bulges through gas accretion and starbursts in cluster central dominant galaxies. Astrophys. J. 652, 216–231 (2006)The energy that black holes inject into the lobes of radio galaxies is approximately equal to the energy that is needed to offset cooling.
Churazov, E., Sunyaev, R., Forman, W. & Boehringer, H. Cooling flows as a calorimeter of active galactic nucleus mechanical power. Mon. Not. R. Astron. Soc. 332, 729–734 (2002)Black holes sense the entropy of the surrounding gas and adjust their accretion rate to offset cooling.
Cattaneo, A. & Teyssier, R. AGN self-regulation in cooling flow clusters. Mon. Not. R. Astron. Soc. 376, 1547–1556 (2007)
Ruszkowski, M., Brueggen, M. & Begelman, M. Cluster heating by viscous dissipation of sound waves. Astrophys. J. 611, 158–163 (2004)
Binney, J. & Tabor, G. Evolving cooling flows. Mon. Not. R. Astron. Soc. 276, 663–678 (1995)First introduction of black hole feedback as a possible solution to the cooling flow problem.
Ciotti, L. & Ostriker, J. P. Radiative feedback from massive black holes in elliptical galaxies: AGN flaring and central starburst fueled by recycled gas. Astrophys. J. 665, 1038–1056 (2007)Standard reference for radiative feedback and its role in the maintenance of elliptical galaxies.
Peterson, J. R. & Fabian, A. C. X-ray spectroscopy of cooling clusters. Phys. Rep. 427, 1–39 (2006)
McNamara, B. R. & Nulsen, P. E. J. Heating hot atmospheres with active galactic nuclei. Annu. Rev. Astron. Astrophys. 45, 117–175 (2007)
Croton, D. et al. The many lives of active galactic nuclei: cooling flows, black holes and the luminosities and colours of galaxies. Mon. Not. R. Astron. Soc. 365, 11–28 (2006)
Bower, R. et al. Breaking the hierarchy of galaxy formation. Mon. Not. R. Astron. Soc. 370, 645–655 (2006)
Cattaneo, A. et al. Modelling the galaxy bimodality: shutdown above a critical halo mass. Mon. Not. R. Astron. Soc. 370, 1651–1665 (2006)Refs 54–56 show that the black hole–galaxy co-evolution contains an initial rapid growth phase followed by a ‘maintenance’ phase, in which black holes couple to the hot gas to suppress star formation.
Kormendy, J., Fisher, D. B., Cornell, M. E. & Bender, R. Structure and formation of elliptical and spheroidal galaxies. Astrophys. J. Suppl. Ser. (in the press); preprint at 〈http://arxiv.org/abs/0810.1681〉 (2008)
Lutz, D. et al. Star formation in the hosts of high-z QSOs: evidence from Spitzer PAH detections. Astrophys. J. 684, 853–861 (2008)
Heckman, T. M. & Kauffmann, G. The host galaxies of AGN in the Sloan Digital Sky Survey. N. Astron. Rev. 50, 677–684 (2006)
Tremonti, C. A., Moustakas, J. & Diamond-Stanic, A. M. The discovery of 1000 km s-1 outflows in massive poststarburst galaxies at z∼0.6. Astrophys. J. 663, 77–80 (2007)Most post-starburst galaxies contain winds of presumably AGN origin.
Schawinski, K. et al. Observational evidence for AGN feedback in early-type galaxies. Mon. Not. R. Astron. Soc. 382, 1415–1431 (2007)
Quintero, A. et al. Selection and photometric properties of K+A galaxies. Astrophys. J. 602, 190–199 (2004)
Chen, Y. et al. Statistics of X-ray observables for the cooling-core and non-cooling core galaxy clusters. Astron. Astrophys. 466, 805–812 (2007)
Ponman, T. J., Bourner, P. D. J., Ebeling, H. & Boehringer, H. A. ROSAT survey of Hickson’s compact galaxy groups. Mon. Not. R. Astron. Soc. 283, 690–708 (1996)
Edge, A. C. & Stewart, G. C. EXOSAT observations of clusters of galaxies. I — The X-ray data. II — X-ray to optical correlations. Mon. Not. R. Astron. Soc. 252, 414–441 (1991)
Evrard, A. E. & Henry, J. P. Expectations for X-ray cluster observations by the ROSAT satellite. Astrophys. J. 383, 95–103 (1991)
Kaiser, N. Evolution of clusters of galaxies. Astrophys. J. 383, 104–111 (1991)
Lloyd-Davies, E. J., Ponman, T. J. & Cannon, D. B. The entropy and energy of intergalactic gas in galaxy clusters. Mon. Not. R. Astron. Soc. 315, 689–702 (2000)
Valageas, P. & Silk, J. The entropy history of the universe. Astron. Astrophys. 350, 725–742 (1999)
Oh, S. P. & Benson, A. J. Entropy injection as a global feedback mechanism. Mon. Not. R. Astron. Soc. 342, 664–672 (2003)
McCarthy, I. G., Babul, A., Bower, R. G. & Balogh, M. L. Towards a holistic view of the heating and cooling of the intracluster medium. Mon. Not. R. Astron. Soc. 386, 1309–1331 (2008)
Burns, J. O. The radio properties of cD galaxies in Abell clusters. I — an X-ray selected sample. Astron. J. 99, 14–30 (1990)
Best, P. N. et al. On the prevalence of radio-loud active galactic nuclei in brightest cluster galaxies: implications for AGN heating of cooling flows. Mon. Not. R. Astron. Soc. 379, 894–908 (2007)70% of cluster cD galaxies are radio galaxies: note X-ray cavities are present in a similar percentage of cool core clusters (ref. 76).
Blandford, R. D. & Begelman, M. C. On the fate of gas accreting at a low rate on to a black hole. Mon. Not. R. Astron. Soc. 303, 1L–5L (1999)
Dunn, R. J. H. & Fabian, A. C. Investigating AGN heating in a sample of nearby clusters. Mon. Not. R. Astron. Soc. 373, 959–971 (2006)
Nusser, A., Silk, J. & Babul, A. Suppressing cluster cooling flows by self-regulated heating from a spatially distributed population of active galactic nuclei. Mon. Not. R. Astron. Soc. 373, 739–746 (2006)
Binney, J., Bibi, F. A. & Omma, H. Bubbles as tracers of heat input to cooling flows. Mon. Not. R. Astron. Soc. 377, 142–146 (2007)
Bondi, H. On spherically symmetrical accretion. Mon. Not. R. Astron. Soc. 112, 195–204 (1952)
Allen, S. W. et al. The relation between accretion rate and jet power in X-ray luminous elliptical galaxies. Mon. Not. R. Astron. Soc. 372, 21–30 (2006)
Magliocchetti, M. & Brueggen, M. The interplay between radio galaxies and cluster environment. Mon. Not. R. Astron. Soc. 379, 260–274 (2007)The entropy of the intracluster medium is higher in clusters with extended radio sources.
Voit, G. M. & Donahue, M. An observationally motivated framework for AGN heating of cluster cores. Astrophys. J. 634, 955–963 (2005)
Mathews, W. G. & Brighenti, F. Creation of X-ray cavities in clusters with cosmic rays. Astrophys. J. 660, 1137–1145 (2006)
Salomé, P. et al. Cold molecular gas in the Perseus cluster core. Astron. Astrophys. 454, 437–445 (2006)
Mathews, W. G. & Baker, J. C. Galactic winds. Astrophys. J. 170, 241–260 (1971)
Helmboldt, J. F., Taylor, G. B., Walker, R. C. & Blandford, R. D. A statistical description of AGN jet evolution from the VLBA Imaging and Polarimetry Survey (VIPS). Astrophys. J. 681, 897–904 (2008)
Bildfell, C., Hoekstra, H., Babul, A. & Mahdavi, A. Resurrecting the red from the dead: optical properties of BCGs in X-ray luminous clusters. Mon. Not. R. Astron. Soc. 389, 1637–1654 (2008)
Best, P. N. et al. The host galaxies of radio-loud active galactic nuclei: mass dependences, gas cooling and active galactic nuclei feedback. Mon. Not. R. Astron. Soc. 362, 25–40 (2005)
Best, P. N., Kaiser, C. M., Heckman, T. M. & Kauffmann, G. AGN-controlled cooling in elliptical galaxies. Mon. Not. R. Astron. Soc. 368, 67L–71L (2007)
Dekel, A. & Birnboim, Y. Gravitational quenching in massive galaxies and clusters by clumpy accretion. Mon. Not. R. Astron. Soc. 383, 119–138 (2008)
Khochfar, S. & Ostriker, J. P. O. Adding environmental gas physics to the semianalytic method for galaxy formation: gravitational heating. Astrophys. J. 680, 54–69 (2008)
Naab, T., Johansson, P. H., Ostriker, J. P. & Efstathiou, G. Formation of early-type galaxies from cosmological initial conditions. Astrophys. J. 658, 710–720 (2007)
Baldry, I. K. et al. Quantifying the bimodal color magnitude distribution of galaxies. Astrophys. J. 600, 681–694 (2004)
Faber, S. M. et al. The centers of early-type galaxies with HST. IV. Central parameter relations. Astron. J. 114, 1771–1796 (1997)
Naab, T., Khochfar, S. & Burkert, A. Properties of early type, dry galaxy mergers and the origin of massive elliptical galaxies. Astrophys. J. 636, 81–84 (2006)
Cox, T. J. et al. The kinematic structure of merger remnants. Astrophys. J. 650, 791–811 (2006)
Faber, S. M. et al. Galaxy luminosity functions to z∼1 from DEEP2 and COMBO-17: implications for red galaxy formation. Astrophys. J. 665, 265–294 (2007)
Khalatyan, A. et al. Is AGN feedback necessary to form red elliptical galaxies? Mon. Not. R. Astron. Soc. 387, 13–30 (2008)
Donahue, M., Horner, D. J., Cavagnolo, K. W. & Voit, G. M. Entropy profiles in the cores of cooling flow clusters of galaxies. Astrophys. J. 643, 730–750 (2006)
Acknowledgements
A.C. thanks his wife A. Fylaktou for assistance in making the Review readable for a broader audience.
Author Contributions A.C. initiated the project, wrote the first draft, and had editorial control throughout. He chose to have many co-authors to show that the Review reflects consensus within the field. S.M.F. made a major contribution to the structure and content of the Review. J.B., A.D., J.K. and R.M. participated extensively in the writing of the manuscript, A.B., P.B., and M.B. contributed significantly to individual sections. A.K., A.M. and P.B. produced Figs 2, 3 and 4, respectively. The other authors contributed mainly by providing comments on drafts and by participating in scientific discussions in connection with: X-ray observations of galaxy clusters (A.C.F.), galaxy formation (C.S.F., M.S.), the interaction of radiation with the interstellar medium (H.N.), the interaction of quasar winds with the interstellar medium (J.S.), and quasar winds and host galaxies (L.W.).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Cattaneo, A., Faber, S., Binney, J. et al. The role of black holes in galaxy formation and evolution. Nature 460, 213–219 (2009). https://doi.org/10.1038/nature08135
Issue Date:
DOI: https://doi.org/10.1038/nature08135
This article is cited by
-
A titanic interstellar medium ejection from a massive starburst galaxy at redshift 1.4
Nature Astronomy (2021)
-
Hot Atmospheres, Cold Gas, AGN Feedback and the Evolution of Early Type Galaxies: A Topical Perspective
Space Science Reviews (2019)
-
AGN outflows and feedback twenty years on
Nature Astronomy (2018)
-
Impact of supermassive black hole growth on star formation
Nature Astronomy (2017)
-
The slow death of red galaxies
Nature (2015)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.