Letter | Published:

Giant tunnel electroresistance for non-destructive readout of ferroelectric states

Nature volume 460, pages 8184 (02 July 2009) | Download Citation

Subjects

Abstract

Ferroelectrics possess a polarization that is spontaneous, stable and electrically switchable1, and submicrometre-thick ferroelectric films are currently used as non-volatile memory elements with destructive capacitive readout2. Memories based on tunnel junctions with ultrathin ferroelectric barriers would enable non-destructive resistive readout3. However, the achievement of room-temperature polarization stability and switching at very low thickness is challenging4,5. Here we use piezoresponse force microscopy at room temperature to show robust ferroelectricity down to 1 nm in highly strained BaTiO3 films; we also use room-temperature conductive-tip atomic force microscopy to demonstrate resistive readout of the polarization state through its influence on the tunnel current6,7. The resulting electroresistance effect scales exponentially with ferroelectric film thickness, reaching 75,000% at 3 nm. Our approach exploits the otherwise undesirable leakage current—dominated by tunnelling at these very low thicknesses—to read the polarization state without destroying it. We demonstrate scalability down to 70 nm, corresponding to potential densities of >16 Gbit inch-2. These results pave the way towards ferroelectric memories with simplified architectures, higher densities and faster operation, and should inspire further exploration of the interplay between quantum tunnelling and ferroelectricity at the nanoscale.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    , & Physics of thin-film ferroelectric oxides. Rev. Mod. Phys. 77, 1083–1130 (2005)

  2. 2.

    & Ferroelectric memories. Science 246, 1400–1405 (1989)

  3. 3.

    & Tunneling across a ferroelectric. Science 313, 181–183 (2006)

  4. 4.

    & Critical thickness for ferroelectricity in perovskite ultrathin films. Nature 422, 506–509 (2003)

  5. 5.

    et al. Direct evidence for ferroelectric polar distortion in ultrathin lead titanate perovskite films. Phys. Rev. B 73, 094110 (2006)

  6. 6.

    , , & Giant electroresistance in ferroelectric tunnel junctions. Phys. Rev. Lett. 94, 246802 (2005)

  7. 7.

    , , & Theoretical current-voltage characteristics of ferroelectric tunnel junctions. Phys. Rev. B 72, 125341 (2005)

  8. 8.

    , & Size effects on polarization in epitaxial ferroelectric films and the concept of ferroelectric tunnel junctions including first results. Mater. Res. Soc. Symp. Proc. 688, C6.5 (2002)

  9. 9.

    & in Handbook of Theoretical and Computational Nanotechnology Vol. 7 (Rieth, M. & Schommers, W.) 623–728 (American Scientific Publishers, 2006)

  10. 10.

    et al. Direct evidence for ferroelectric polar distortion in ultrathin lead titanate perovskite films. Phys. Rev. B 73, 094110 (2006)

  11. 11.

    et al. Ferroelectricity in ultrathin perovskite films. Science 304, 1650–1653 (2004)

  12. 12.

    et al. Monodomain to polydomain transition in ferroelectric PbTiO3 thin films with La0.67Sr0.33MnO3 electrodes. Appl. Phys. Lett. 90, 052907 (2007)

  13. 13.

    et al. Ferroelectricity down to at least 2 nm in multiferroic BiFeO3 epitaxial thin films. Jpn. J. Appl. Phys. 45, L187–L189 (2006)

  14. 14.

    et al. Ferroelectric size effects in multiferroic BiFeO3 thin films. Appl. Phys. Lett. 90, 252906 (2007)

  15. 15.

    et al. Tunnel junctions with multiferroic barriers. Nature Mater. 6, 296–302 (2007)

  16. 16.

    et al. Critical thickness of ultrathin ferroelectric BaTiO3 films. Appl. Phys. Lett. 86, 102907 (2005)

  17. 17.

    et al. Wedgelike ultrathin epitaxial BaTiO3 films for studies of scaling effects in ferroelectrics. Appl. Phys. Lett. 93, 072902 (2008)

  18. 18.

    , , & Photochemical switching of ultrathin PbTiO3 films. Appl. Phys. Lett. 92, 112901 (2008)

  19. 19.

    et al. Imaging and alignment of nanoscale 180° stripe domains in ferroelectric thin films. Appl. Phys. Lett. 93, 182901 (2008)

  20. 20.

    et al. Enhancement of ferroelectricity in strained BaTiO3 thin films. Science 306, 1005–1009 (2004)

  21. 21.

    , & Ferroelectricity in thin perovskite films. Appl. Phys. Lett. 75, 856–858 (1999)

  22. 22.

    , , & Imaging the local electrical properties of metal surfaces by atomic force microscopy with conducting probes. Appl. Phys. Lett. 69, 1975–1977 (1996)

  23. 23.

    et al. Magnetic tunnel junctions with ferroelectric barriers: predictions of four resistance states from first principles. Nano Lett. 9, 427–432 (2009)

  24. 24.

    et al. Resistive switching in metal-ferroelectric-metal junctions. Appl. Phys. Lett. 83, 4595–4597 (2003)

  25. 25.

    , , , & Effect of ferroelectricity on electron transport in Pt/BaTiO3/Pt tunnel junctions. Phys. Rev. Lett. 98, 137201 (2007)

  26. 26.

    , & Nanoscale control of ferroelectric polarization and domain size in epitaxial Pb(Zr0.2Ti0.8)O3 thin films. Appl. Phys. Lett. 79, 530–532 (2001)

  27. 27.

    , , & Conducting probe atomic force microscopy applied to organic conducting blends. Appl. Phys. Lett. 79, 2993–2995 (2001)

Download references

Acknowledgements

We thank H. Béa, C. Israel, M. Vickers and B. Warot-Fonrose for technical support, and H. Kohlstedt for discussions. This work was supported by the France-UK PMC Alliance programme, the French RTRA Triangle de la Physique, EU STRP Macomufi, EU STRP CoMePhS, UK EPSRC EP/E026206/I, the French ANR Femmes and the French ANR Alicante.

Author information

Affiliations

  1. Unité Mixte de Physique CNRS/Thales, 1 Av. A. Fresnel, Campus de l’Ecole Polytechnique, 91767 Palaiseau, France, and Université Paris-Sud, 91405 Orsay, France

    • V. Garcia
    • , S. Fusil
    • , K. Bouzehouane
    • , A. Barthélémy
    •  & M. Bibes
  2. Department of Materials Science, University of Cambridge, Cambridge CB2 3QZ, UK

    • V. Garcia
    •  & N. D. Mathur
  3. Université d’Evry-Val d'Essonne, Bd. F. Mitterrand, 91025 Evry cedex, France

    • S. Fusil
  4. Thales Research & Technology, 1 Av. A. Fresnel, Campus de l’Ecole Polytechnique, 91767 Palaiseau, France

    • S. Enouz-Vedrenne

Authors

  1. Search for V. Garcia in:

  2. Search for S. Fusil in:

  3. Search for K. Bouzehouane in:

  4. Search for S. Enouz-Vedrenne in:

  5. Search for N. D. Mathur in:

  6. Search for A. Barthélémy in:

  7. Search for M. Bibes in:

Corresponding author

Correspondence to M. Bibes.

Supplementary information

PDF files

  1. 1.

    Supplementary Information

    This file contains Supplementary Data, Supplementary Figures S1-S5 with Legends and a Supplementary Reference.

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nature08128

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.