Direct observation of correlations between individual photon emission events of a microcavity laser

Abstract

Lasers are recognized for coherent light emission, the onset of which is reflected in a change in the photon statistics1. For many years, attempts have been made to directly measure correlations in the individual photon emission events of semiconductor lasers2,3. Previously, the temporal decay of these correlations below or at the lasing threshold was considerably faster than could be measured with the time resolution provided by the Hanbury Brown/Twiss measurement set-up4 used. Here we demonstrate a measurement technique using a streak camera that overcomes this limitation and provides a record of the arrival times of individual photons. This allows us to investigate the dynamical evolution of correlations between the individual photon emission events. We apply our studies to micropillar lasers5 with semiconductor quantum dots2,3,6,7,8 as the active material, operating in the regime of cavity quantum electrodynamics9. For laser resonators with a low cavity quality factor, Q, a smooth transition from photon bunching to uncorrelated emission with increasing pumping is observed; for high-Q resonators, we see a non-monotonic dependence around the threshold where quantum light emission can occur. We identify regimes of dynamical anti-bunching of photons in agreement with the predictions of a microscopic theory that includes semiconductor-specific effects.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Time-resolved photon counting statistics.
Figure 2: Measured second-order photon correlation function at zero delay time (top) and output intensity versus input pump power, P exc (bottom), for three different microcavity lasers.
Figure 3: Measured temporal evolution of the second-order correlation function for selected pump powers, Pexc.
Figure 4: Calculated zero-delay correlation functions, input–output curves and temporal dynamics of g(2)(τ).
Figure 5: Measured third-order correlation function g (3) (0).

References

  1. 1

    Glauber, R. J. The quantum theory of optical coherence. Phys. Rev. 130, 2529–2539 (1963)

    ADS  MathSciNet  Article  Google Scholar 

  2. 2

    Strauf, S. et al. Self-tuned quantum dot gain in photonic crystal lasers. Phys. Rev. Lett. 96, 127404 (2006)

    ADS  CAS  Article  Google Scholar 

  3. 3

    Ulrich, S. M. et al. Photon statistics of semiconductor microcavity lasers. Phys. Rev. Lett. 98, 043906 (2007)

    ADS  CAS  Article  Google Scholar 

  4. 4

    Hanbury Brown, R. & Twiss, R. Q. Correlation between photons in two coherent beams of light. Nature 177, 27–29 (1956)

    ADS  Article  Google Scholar 

  5. 5

    Vahala, K. J. Optical microcavities. Nature 424, 839–846 (2003)

    ADS  CAS  Article  Google Scholar 

  6. 6

    Choi, J.-S. et al. Evolution of the onset of coherence in a family of photonic crystal nanolasers. Appl. Phys. Lett. 91, 031108 (2007)

    ADS  Article  Google Scholar 

  7. 7

    Xie, Z. G., Götzinger, S., Fang, W., Cao, H. & Solomon, G. S. Influence of a single quantum dot state on the characteristics of a microdisk laser. Phys. Rev. Lett. 98, 117401 (2007)

    ADS  CAS  Article  Google Scholar 

  8. 8

    Reitzenstein, S. et al. Single quantum dot controlled lasing effects in high-Q micropillar cavities. Opt. Express 16, 4848–4857 (2008)

    ADS  CAS  Article  Google Scholar 

  9. 9

    Berman, P. Cavity Quantum Electrodynamics (Academic, 1994)

    Google Scholar 

  10. 10

    Rice, P. R. & Carmichael, H. J. Photon statistics of a cavity QED laser: a comment on the laser-phase-transition analogy. Phys. Rev. A 50, 4318–4329 (1994)

    ADS  CAS  Article  Google Scholar 

  11. 11

    Loudon, R. The Quantum Theory of Light 2nd edn (Clarendon, 1983)

    Google Scholar 

  12. 12

    Kimble, H. J., Dagenais, M. & Mandel, L. Photon antibunching in resonance fluorescence. Phys. Rev. Lett. 39, 691–695 (1977)

    ADS  CAS  Article  Google Scholar 

  13. 13

    Michler, P. et al. A quantum dot single-photon turnstile device. Science 290, 2282–2285 (2000)

    ADS  CAS  Article  Google Scholar 

  14. 14

    Machida, S., Yamamoto, Y. & Itaya, Y. Observation of amplitude squeezing in a constant-current-driven semiconductor laser. Phys. Rev. Lett. 58, 1000–1003 (1987)

    ADS  CAS  Article  Google Scholar 

  15. 15

    Hofmann, H. F. & Hess, O. Coexistence of thermal noise and squeezing in the intensity fluctuations of small laser diodes. J. Opt. Soc. Am. B 17, 1926–1933 (2000)

    ADS  CAS  Article  Google Scholar 

  16. 16

    Wiele, C., Haake, F., Rocke, C. & Wixforth, A. Photon trains and lasing: the periodically pumped quantum dot. Phys. Rev. A 58, R2680–R2683 (1998)

    ADS  CAS  Article  Google Scholar 

  17. 17

    Benson, O. & Yamamoto, Y. Master-equation model of a single-quantum-dot microsphere laser. Phys. Rev. A 59, 4756–4763 (1999)

    ADS  CAS  Article  Google Scholar 

  18. 18

    Gies, C., Wiersig, J., Lorke, M. & Jahnke, F. Semiconductor model for quantum dot-based microcavity lasers. Phys. Rev. A 75, 013803 (2007)

    ADS  Article  Google Scholar 

  19. 19

    Fricke, J. Transport equations including many-particle correlations for an arbitrary quantum system: a general formalism. Ann. Phys. 252, 479–498 (1996)

    ADS  MathSciNet  CAS  Article  Google Scholar 

  20. 20

    Hoyer, W., Kira, M. & Koch, S. W. in Nonequilibrium Physics at Short Time Scales (ed. Morawetz, K.) 309–338 (Springer, 2004)

    Google Scholar 

  21. 21

    Kira, M., Jahnke, F., Hoyer, W. & Koch, S. W. Quantum theory of spontaneous emission and coherent effects in semiconductor microstructures. Prog. Quantum Electron. 23, 189–279 (1999)

    ADS  CAS  Article  Google Scholar 

  22. 22

    Schwab, M. et al. Radiative emission dynamics of quantum dots in a single cavity micropillar. Phys. Rev. B 74, 045323 (2006)

    ADS  Article  Google Scholar 

  23. 23

    Baer, N., Gies, C., Wiersig, J. & Jahnke, F. Luminescence of a semiconductor quantum dot system. Eur. Phys. J. B 50, 411–418 (2006)

    ADS  CAS  Article  Google Scholar 

  24. 24

    Berstermann, T. et al. Systematic study of carrier correlations in the electron-hole recombination dynamics of quantum dots. Phys. Rev. B 76, 165318 (2007)

    ADS  Article  Google Scholar 

  25. 25

    Carmichael, H. J. Statistical Methods in Quantum Optics 1 (Springer, 1998)

    Google Scholar 

Download references

Acknowledgements

We would like to thank P. Gartner and I. Akimov for discussions and technical support. Funding from the Deutsche Forschungsgemeinschaft through the research group ‘Quantum optics in semiconductor nanostructures’ and a grant for CPU time at the Forschungszentrum Jülich (Germany) is gratefully acknowledged.

Author Contributions Experiments were performed in Dortmund by M.A., T.B. and M.B., with the participation of C. Kistner. Calculations were done in Bremen by J.W., C.G. and F.J. The III-V samples were grown in Würzburg by C. Kistner, S.R., C.S., S.H. and A.F. The II-VI sample was prepared in Bremen by C. Kruse, J.K. and D.H.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to F. Jahnke or M. Bayer.

Supplementary information

Supplementary Information

This file contains Supplementary Methods and a Supplementary Discussion. (PDF 73 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wiersig, J., Gies, C., Jahnke, F. et al. Direct observation of correlations between individual photon emission events of a microcavity laser. Nature 460, 245–249 (2009). https://doi.org/10.1038/nature08126

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.