Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Cyclic AMP intoxication of macrophages by a Mycobacterium tuberculosis adenylate cyclase


With 8.9 million new cases and 1.7 million deaths per year, tuberculosis is a leading global killer that has not been effectively controlled1,2. The causative agent, Mycobacterium tuberculosis, proliferates within host macrophages where it modifies both its intracellular and local tissue environment, resulting in caseous granulomas with incomplete bacterial sterilization3,4. Although infection by various mycobacterial species produces a cyclic AMP burst within macrophages that influences cell signalling, the underlying mechanism for the cAMP burst remains unclear5,6,7. Here we show that among the 17 adenylate cyclase genes present in M. tuberculosis, at least one (Rv0386) is required for virulence. Furthermore, we demonstrate that the Rv0386 adenylate cyclase facilitates delivery of bacterial-derived cAMP into the macrophage cytoplasm. Loss of Rv0386 and the intramacrophage cAMP it delivers results in reductions in TNF-α production via the protein kinase A and cAMP response-element-binding protein pathway, decreased immunopathology in animal tissues, and diminished bacterial survival. Direct intoxication of host cells by bacterial-derived cAMP may enable M. tuberculosis to modify both its intracellular and tissue environments to facilitate its long-term survival.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: The M. tuberculosis -induced macrophage cAMP burst and CREB phosphorylation pathway require live bacilli but not host GPCR-AC.
Figure 2: Overexpression of phosphodiesterase Rv0805 in M. tuberculosis reduces intramacrophage cAMP levels, CREB phosphorylation, and TNF-α secretion in infected J774 cells.
Figure 3: The M. tuberculosisRv0386 mutant shows reduced mouse virulence, and lower levels of intramacrophage cAMP, CREB phosphorylation, and TNF-α secretion.
Figure 4: Bacterial-derived cAMP enters the macrophage cytosol after infection.


  1. 1

    Dye, C. Global epidemiology of tuberculosis. Lancet 367, 938–940 (2006)

    Article  Google Scholar 

  2. 2

    Wright, A. et al. Epidemiology of antituberculosis drug resistance 2002–07: an updated analysis of the Global Project on Anti-Tuberculosis Drug Resistance Surveillance. Lancet 10.1016/S0140-6736(09)60331-7 (in the press)

  3. 3

    Flannagan, R. S., Cosio, G. & Grinstein, S. Antimicrobial mechanisms of phagocytes and bacterial evasion strategies. Nature Rev. Microbiol. 7, 355–366 (2009)

    CAS  Article  Google Scholar 

  4. 4

    Dannenberg, A. M. Immunopathogenesis of pulmonary tuberculosis. Hosp. Pract. (Off. Ed.) 28, 51–58 (1993)

    Article  Google Scholar 

  5. 5

    Bai, G., Schaak, D. D. & McDonough, K. A. cAMP levels within Mycobacterium tuberculosis and Mycobacterium bovis BCG increase upon infection of macrophages. FEMS Immunol. Med. Microbiol. 55, 68–73 (2009)

    CAS  Article  Google Scholar 

  6. 6

    Roach, S. K., Lee, S. B. & Schorey, J. S. Differential activation of the transcription factor cyclic AMP response element binding protein (CREB) in macrophages following infection with pathogenic and nonpathogenic mycobacteria and role for CREB in tumor necrosis factor α production. Infect. Immun. 73, 514–522 (2005)

    CAS  Article  Google Scholar 

  7. 7

    Lowrie, D. B., Jackett, P. S. & Ratcliffe, N. A. Mycobacterium microti may protect itself from intracellular destruction by releasing cyclic AMP into phagosomes. Nature 254, 600–602 (1975)

    ADS  CAS  Article  Google Scholar 

  8. 8

    Baker, D. A. & Kelly, J. M. Structure, function and evolution of microbial adenylyl and guanylyl cyclases. Mol. Microbiol. 52, 1229–1242 (2004)

    CAS  Article  Google Scholar 

  9. 9

    Sands, W. A. & Palmer, T. M. Regulating gene transcription in response to cyclic AMP elevation. Cell. Signal. 20, 460–466 (2008)

    CAS  Article  Google Scholar 

  10. 10

    Serezani, C. H., Ballinger, M. N., Aronoff, D. M. & Peters-Golden, M. Cyclic AMP: master regulator of innate immune cell function. Am. J. Respir. Cell Mol. Biol. 39, 127–132 (2008)

    CAS  Article  Google Scholar 

  11. 11

    Johannessen, M. & Moens, U. Multisite phosphorylation of the cAMP response element-binding protein (CREB) by a diversity of protein kinases. Front. Biosci. 12, 1814–1832 (2007)

    Article  Google Scholar 

  12. 12

    Servillo, G., Della Fazia, M. A. & Sassone-Corsi, P. Coupling cAMP signaling to transcription in the liver: pivotal role of CREB and CREM. Exp. Cell Res. 275, 143–154 (2002)

    CAS  Article  Google Scholar 

  13. 13

    Pethe, K. et al. Isolation of Mycobacterium tuberculosis mutants defective in the arrest of phagosome maturation. Proc. Natl Acad. Sci. USA 101, 13642–13647 (2004)

    ADS  CAS  Article  Google Scholar 

  14. 14

    Walburger, A. et al. Protein kinase G from pathogenic mycobacteria promotes survival within macrophages. Science 304, 1800–1804 (2004)

    ADS  CAS  Article  Google Scholar 

  15. 15

    Fratti, R. A., Chua, J., Vergne, I. & Deretic, V. Mycobacterium tuberculosis glycosylated phosphatidylinositol causes phagosome maturation arrest. Proc. Natl Acad. Sci. USA 100, 5437–5442 (2003)

    ADS  CAS  Article  Google Scholar 

  16. 16

    Axelrod, S. et al. Delay of phagosome maturation by a mycobacterial lipid is reversed by nitric oxide. Cell. Microbiol. 10, 1530–1545 (2008)

    CAS  Article  Google Scholar 

  17. 17

    Hunter, R. L., Jagannath, C. & Actor, J. K. Pathology of postprimary tuberculosis in humans and mice: contradiction of long-held beliefs. Tuberculosis (Edinb.) 87, 267–278 (2007)

    Article  Google Scholar 

  18. 18

    Tsai, M. C. et al. Characterization of the tuberculous granuloma in murine and human lungs: cellular composition and relative tissue oxygen tension. Cell. Microbiol. 8, 218–232 (2006)

    CAS  Article  Google Scholar 

  19. 19

    Timm, J. et al. Differential expression of iron-, carbon-, and oxygen-responsive mycobacterial genes in the lungs of chronically infected mice and tuberculosis patients. Proc. Natl Acad. Sci. USA 100, 14321–14326 (2003)

    ADS  CAS  Article  Google Scholar 

  20. 20

    Via, L. E. et al. Tuberculous granulomas are hypoxic in guinea pigs, rabbits, and nonhuman primates. Infect. Immun. 76, 2333–2340 (2008)

    CAS  Article  Google Scholar 

  21. 21

    Shenoy, A. R., Sivakumar, K., Krupa, A., Srinivasan, N. & Visweswariah, S. S. A survey of nucleotide cyclases in Actinobacteria: unique domain organization and expansion of the class III cyclase family in Mycobacterium tuberculosis . Comp. Funct. Genomics 5, 17–38 (2004)

    CAS  Article  Google Scholar 

  22. 22

    Lamichhane, G. et al. A postgenomic method for predicting essential genes at subsaturation levels of mutagenesis: application to Mycobacterium tuberculosis . Proc. Natl Acad. Sci. USA 100, 7213–7218 (2003)

    ADS  CAS  Article  Google Scholar 

  23. 23

    Ahuja, N., Kumar, P. & Bhatnagar, R. The adenylate cyclase toxins. Crit. Rev. Microbiol. 30, 187–196 (2004)

    CAS  Article  Google Scholar 

  24. 24

    von Knethen, A. & Brune, B. Attenuation of macrophage apoptosis by the cAMP-signaling system. Mol. Cell. Biochem. 212, 35–43 (2000)

    CAS  Article  Google Scholar 

  25. 25

    Keane, J. et al. Tuberculosis associated with infliximab, a tumor necrosis factor α-neutralizing agent. N. Engl. J. Med. 345, 1098–1104 (2001)

    CAS  Article  Google Scholar 

  26. 26

    Chakravarty, S. D. et al. Tumor necrosis factor blockade in chronic murine tuberculosis enhances granulomatous inflammation and disorganizes granulomas in the lungs. Infect. Immun. 76, 916–926 (2008)

    CAS  Article  Google Scholar 

  27. 27

    Bekker, L. G. et al. Immunopathologic effects of tumor necrosis factor alpha in murine mycobacterial infection are dose dependent. Infect. Immun. 68, 6954–6961 (2000)

    CAS  Article  Google Scholar 

  28. 28

    Clay, H., Volkman, H. E. & Ramakrishnan, L. Tumor necrosis factor signaling mediates resistance to mycobacteria by inhibiting bacterial growth and macrophage death. Immunity 29, 283–294 (2008)

    CAS  Article  Google Scholar 

  29. 29

    Hanekom, W. A. et al. Mycobacterium tuberculosis inhibits maturation of human monocyte-derived dendritic cells in vitro . J. Infect. Dis. 188, 257–266 (2003)

    CAS  Article  Google Scholar 

  30. 30

    Davis, J. M. & Ramakrishnan, L. The role of the granuloma in expansion and dissemination of early tuberculous infection. Cell 136, 37–49 (2009)

    CAS  Article  Google Scholar 

  31. 31

    Agarwal, N., Woolwine, S. C., Tyagi, S. & Bishai, W. R. Characterization of the Mycobacterium tuberculosis sigma factor SigM by assessment of virulence and identification of SigM-dependent genes. Infect. Immun. 75, 452–461 (2007)

    CAS  Article  Google Scholar 

  32. 32

    Shenoy, A. R., Sreenath, N., Podobnik, M., Kovacevic, M. & Visweswariah, S. S. The Rv0805 gene from Mycobacterium tuberculosis encodes a 3′,5′-cyclic nucleotide phosphodiesterase: biochemical and mutational analysis. Biochemistry 44, 15695–15704 (2005)

    CAS  Article  Google Scholar 

  33. 33

    Higashida, H., Hossain, K. Z., Takahagi, H. & Noda, M. Measurement of adenylyl cyclase by separating cyclic AMP on silica gel thin-layer chromatography. Anal. Biochem. 308, 106–111 (2002)

    CAS  Article  Google Scholar 

  34. 34

    Böhme, E. & Schultz, G. Separation of cyclic nucleotides by thin-layer chromatography on polyethyleneimine cellulose. Methods Enzymol. 38, 27–38 (1974)

    Article  Google Scholar 

Download references


The support of National Institutes of Health (NIH) awards AI30036, AI36973 and AI37856 is gratefully acknowledged.

Author Contributions N.A. and W.R.B. designed the research. N.A. performed the experiments. R.G., S.N. and G.L. designed and contributed to the mouse experiments. N.A. and W.R.B. analysed the data and wrote the paper.

Author information



Corresponding author

Correspondence to William R. Bishai.

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1-10 with Legends, Supplementary Table 1, Supplementary Notes and Supplementary References. (PDF 657 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Agarwal, N., Lamichhane, G., Gupta, R. et al. Cyclic AMP intoxication of macrophages by a Mycobacterium tuberculosis adenylate cyclase. Nature 460, 98–102 (2009).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing