Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Recent advances and emerging trends in plant hormone signalling

Abstract

Plant growth and development is regulated by a structurally unrelated collection of small molecules called plant hormones. During the last 15 years the number of known plant hormones has grown from five to at least ten. Furthermore, many of the proteins involved in plant hormone signalling pathways have been identified, including receptors for many of the major hormones. Strikingly, the ubiquitin–proteasome pathway plays a central part in most hormone-signalling pathways. In addition, recent studies confirm that hormone signalling is integrated at several levels during plant growth and development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sites of plant hormone perception.
Figure 2: SCFs are required for auxin, jasmonate and gibberellin signalling.
Figure 3: E3 ligases in ethylene and abscisic-acid signalling.
Figure 4: Hormone integration.

Similar content being viewed by others

References

  1. Davies, P. J. in Plant Hormones: Physiology, Biochemistry and Molecular Biology (ed. Davies, P. J.) 1–12 (Kluwer Academic, 1995)

    Google Scholar 

  2. Grun, S., Lindermayr, C., Sell, S. & Durner, J. Nitric oxide and gene regulation in plants. J. Exp. Bot. 57, 507–516 (2006)

    CAS  PubMed  Google Scholar 

  3. Vert, G., Nemhauser, J. L., Geldner, N., Hong, F. & Chory, J. Molecular mechanisms of steroid hormone signaling in plants. Annu. Rev. Cell Dev. Biol. 21, 177–201 (2005)

    CAS  PubMed  Google Scholar 

  4. Browse, J. Jasmonate: an oxylipin signal with many roles in plants. Vitam. Horm. 72, 431–456 (2005)

    CAS  PubMed  Google Scholar 

  5. Loake, G. & Grant, M. Salicylic acid in plant defence—the players and protagonists. Curr. Opin. Plant Biol. 10, 466–472 (2007)

    CAS  PubMed  Google Scholar 

  6. Gomez-Roldan, V. et al. Strigolactone inhibition of shoot branching. Nature 455, 189–194 (2008)

    ADS  CAS  PubMed  Google Scholar 

  7. Umehara, M. et al. Inhibition of shoot branching by new terpenoid plant hormones. Nature 455, 195–200 (2008)References 6 and 7 were the first papers to identify strigolactones as plant hormones that play a major part in inhibiting axillary bud outgrowth.

    ADS  CAS  PubMed  Google Scholar 

  8. Jun, J. H., Fiume, E. & Fletcher, J. C. The CLE family of plant polypeptide signaling molecules. Cell. Mol. Life Sci. 65, 743–755 (2008)

    CAS  PubMed  Google Scholar 

  9. Dharmasiri, N., Dharmasiri, S. & Estelle, M. The F-box protein TIR1 is an auxin receptor. Nature 435, 441–445 (2005)

    ADS  CAS  PubMed  Google Scholar 

  10. Dharmasiri, N. et al. Plant development is regulated by a family of auxin receptor F box proteins. Dev. Cell 9, 109–119 (2005)

    CAS  PubMed  Google Scholar 

  11. Kepinski, S. & Leyser, O. The Arabidopsis F-box protein TIR1 is an auxin receptor. Nature 435, 446–451 (2005)References 9 and 11 were the first papers to demonstrate that TIR1 was a receptor for auxin.

    ADS  CAS  PubMed  Google Scholar 

  12. Ueguchi-Tanaka, M. et al. GIBBERELLIN INSENSITIVE DWARF1 encodes a soluble receptor for gibberellin. Nature 437, 693–698 (2005)

    ADS  CAS  PubMed  Google Scholar 

  13. Chini, A. et al. The JAZ family of repressors is the missing link in jasmonate signalling. Nature 448, 666–671 (2007)

    ADS  CAS  PubMed  Google Scholar 

  14. Thines, B. et al. JAZ repressor proteins are targets of the SCF(COI1) complex during jasmonate signalling. Nature 448, 661–665 (2007)References 13 and 14 were the first to demonstrate that the JAZ proteins were substrates of COI1 and that jasmonate promoted their interactions. This breakthrough strongly suggested that COI1 was a receptor for jasmonate and that the signalling pathway was mechanistically similar to auxin perception and signalling.

    ADS  CAS  PubMed  Google Scholar 

  15. Melotto, M. et al. A critical role of two positively charged amino acids in the Jas motif of Arabidopsis JAZ proteins in mediating coronatine- and jasmonoyl isoleucine-dependent interactions with the COI1 F-box protein. Plant J. 55, 979–988 (2008)

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Pandey, S., Nelson, D. C. & Assmann, S. M. Two novel GPCR-type G proteins are abscisic acid receptors in Arabidopsis . Cell 136, 136–148 (2009)This paper identified two novel G-proteins that directly bind abscisic acid.

    CAS  PubMed  Google Scholar 

  17. Chow, B. & McCourt, P. Plant hormone receptors: perception is everything. Genes Dev. 20, 1998–2008 (2006)

    CAS  PubMed  Google Scholar 

  18. Schwechheimer, C. & Willige, B. C. Shedding light on gibberellic acid signalling. Curr. Opin. Plant Biol. 12, 57–62 (2009)

    CAS  PubMed  Google Scholar 

  19. Rensing, S. A. et al. The Physcomitrella genome reveals evolutionary insights into the conquest of land by plants. Science 319, 64–69 (2008)

    ADS  CAS  PubMed  Google Scholar 

  20. Vandenbussche, F., Fierro, A. C., Wiedemann, G., Reski, R. & Van Der Straeten, D. Evolutionary conservation of plant gibberellin signalling pathway components. BMC Plant Biol. 7, 65 (2007)

    PubMed  PubMed Central  Google Scholar 

  21. Zhao, Y. The role of local biosynthesis of auxin and cytokinin in plant development. Curr. Opin. Plant Biol. 11, 16–22 (2008)

    CAS  PubMed  Google Scholar 

  22. Mockaitis, K. & Estelle, M. Auxin receptors and plant development: a new signaling paradigm. Annu. Rev. Cell Dev. Biol. 24, 55–80 (2008)

    CAS  PubMed  Google Scholar 

  23. Wasternack, C. Jasmonates: an update on biosynthesis, signal transduction and action in plant stress response, growth and development. Ann. Bot. (Lond.) 100, 681–697 (2007)

    CAS  Google Scholar 

  24. Yamaguchi, S. Gibberellin metabolism and its regulation. Annu. Rev. Plant Biol. 59, 225–251 (2008)

    CAS  PubMed  Google Scholar 

  25. Hirano, K., Ueguchi-Tanaka, M. & Matsuoka, M. GID1-mediated gibberellin signaling in plants. Trends Plant Sci. 13, 192–199 (2008)

    CAS  PubMed  Google Scholar 

  26. Hirose, N. et al. Regulation of cytokinin biosynthesis, compartmentalization and translocation. J. Exp. Bot. 59, 75–83 (2008)

    CAS  PubMed  Google Scholar 

  27. Symons, G. M., Ross, J. J., Jager, C. E. & Reid, J. B. Brassinosteroid transport. J. Exp. Bot. 59, 17–24 (2008)

    CAS  PubMed  Google Scholar 

  28. Hirayama, T. & Shinozaki, K. Perception and transduction of abscisic acid signals: keys to the function of the versatile plant hormone ABA. Trends Plant Sci. 12, 343–351 (2007)

    CAS  PubMed  Google Scholar 

  29. Dharmasiri, S. & Estelle, M. The role of regulated protein degradation in auxin response. Plant Mol. Biol. 49, 401–409 (2002)

    CAS  PubMed  Google Scholar 

  30. Moon, J., Parry, G. & Estelle, M. The ubiquitin-proteasome pathway and plant development. Plant Cell 16, 3181–3195 (2004)

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Ruegger, M. et al. The TIR1 protein of Arabidopsis functions in auxin response and is related to human SKP2 and yeast grr1p. Genes Dev. 12, 198–207 (1998)

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Gray, W. M., Kepinski, S., Rouse, D., Leyser, O. & Estelle, M. Auxin regulates SCFTIR1-dependent degradation of AUX/IAA proteins. Nature 414, 271–276 (2001)

    ADS  CAS  PubMed  Google Scholar 

  33. Guilfoyle, T. J. & Hagen, G. Auxin response factors. Curr. Opin. Plant Biol. 10, 453–460 (2007)

    CAS  PubMed  Google Scholar 

  34. Reed, J. W. Roles and activities of Aux/IAA proteins in Arabidopsis . Trends Plant Sci. 6, 420–425 (2001)

    CAS  PubMed  Google Scholar 

  35. Dharmasiri, N., Dharmasiri, S., Jones, A. M. & Estelle, M. Auxin action in a cell-free system. Curr. Biol. 13, 1418–1422 (2003)

    CAS  PubMed  Google Scholar 

  36. Kepinski, S. & Leyser, O. Auxin-induced SCFTIR1-Aux/IAA interaction involves stable modification of the SCFTIR1 complex. Proc. Natl Acad. Sci. USA 101, 12381–12386 (2004)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tan, X. et al. Mechanism of auxin perception by the TIR1 ubiquitin ligase. Nature 446, 640–645 (2007)This paper described the crystal structure of the TIR1 auxin receptor in complex with auxin and its substrate. The structure has substantially improved our understanding of auxin perception.

    ADS  CAS  PubMed  Google Scholar 

  38. Tan, X. & Zheng, N. Hormone signaling through protein destruction: a lesson from plants. Am. J. Physiol. Endocrinol. Metab. 296, E223–E227 (2009)

    CAS  PubMed  Google Scholar 

  39. Hayashi, K. et al. Small-molecule agonists and antagonists of F-box protein-substrate interactions in auxin perception and signaling. Proc. Natl Acad. Sci. USA 105, 5632–5637 (2008)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  40. Tiwari, S. B., Hagen, G. & Guilfoyle, T. J. Aux/IAA proteins contain a potent transcriptional repression domain. Plant Cell 16, 533–543 (2004)

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Szemenyei, H., Hannon, M. & Long, J. A. TOPLESS mediates auxin-dependent transcriptional repression during Arabidopsis embryogenesis. Science 319, 1384–1386 (2008)This paper demonstrated that TOPLESS directly binds domain I of Aux/IAA proteins, leading to transcriptional repression of auxin-responsive genes. This mechanism probably accounts for the repression of ARF function by Aux/IAA proteins.

    ADS  CAS  PubMed  Google Scholar 

  42. Feys, B., Benedetti, C. E., Penfold, C. N. & Turner, J. G. Arabidopsis mutants selected for resistance to the phytotoxin coronatine are male sterile, insensitive to methyl jasmonate, and resistant to a bacterial pathogen. Plant Cell 6, 751–759 (1994)

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Xie, D. X., Feys, B. F., James, S., Nieto-Rostro, M. & Turner, J. G. COI1: an Arabidopsis gene required for jasmonate-regulated defense and fertility. Science 280, 1091–1094 (1998)

    ADS  CAS  PubMed  Google Scholar 

  44. Yan, Y. et al. A downstream mediator in the growth repression limb of the jasmonate pathway. Plant Cell 19, 2470–2483 (2007)

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Katsir, L., Schilmiller, A. L., Staswick, P. E., He, S. Y. & Howe, G. A. COI1 is a critical component of a receptor for jasmonate and the bacterial virulence factor coronatine. Proc. Natl Acad. Sci. USA 105, 7100–7105 (2008)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  46. de Lucas, M. et al. A molecular framework for light and gibberellin control of cell elongation. Nature 451, 480–484 (2008)

    ADS  CAS  PubMed  Google Scholar 

  47. Feng, S. et al. Coordinated regulation of Arabidopsis thaliana development by light and gibberellins. Nature 451, 475–479 (2008)References 46 and 47 revealed that the basic helix–loop–helix transcription factors PIF3 and PIF4 directly interact with DELLA proteins. Upon gibberellin accumulation, the DELLA proteins are destabilized, freeing PIF3 and PIF4 to regulate their target genes. This is a new and compelling model for DELLA-mediated growth regulation.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  48. McGinnis, K. M. et al. The Arabidopsis SLEEPY1 gene encodes a putative F-box subunit of an SCF E3 ubiquitin ligase. Plant Cell 15, 1120–1130 (2003)

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Sasaki, A. et al. Accumulation of phosphorylated repressor for gibberellin signaling in an F-box mutant. Science 299, 1896–1898 (2003)

    ADS  CAS  PubMed  Google Scholar 

  50. Nakajima, M. et al. Identification and characterization of Arabidopsis gibberellin receptors. Plant J. 46, 880–889 (2006)

    CAS  PubMed  Google Scholar 

  51. Griffiths, J. et al. Genetic characterization and functional analysis of the GID1 gibberellin receptors in Arabidopsis . Plant Cell 18, 3399–3414 (2006)

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Willige, B. C. et al. The DELLA domain of GA INSENSITIVE mediates the interaction with the GA INSENSITIVE DWARF1A gibberellin receptor of Arabidopsis . Plant Cell 19, 1209–1220 (2007)

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Murase, K., Hirano, Y., Sun, T. P. & Hakoshima, T. Gibberellin-induced DELLA recognition by the gibberellin receptor GID1. Nature 456, 459–463 (2008)

    ADS  CAS  PubMed  Google Scholar 

  54. Shimada, A. et al. Structural basis for gibberellin recognition by its receptor GID1. Nature 456, 520–523 (2008)References 53 and 54 are the first to describe the structure of the GID1 gibberellin receptor.

    ADS  CAS  PubMed  Google Scholar 

  55. Shen, Y. Y. et al. The Mg-chelatase H subunit is an abscisic acid receptor. Nature 443, 823–826 (2006)

    ADS  CAS  PubMed  Google Scholar 

  56. Mochizuki, N., Brusslan, J. A., Larkin, R., Nagatani, A. & Chory, J. Arabidopsis genomes uncoupled 5 (GUN5) mutant reveals the involvement of Mg-chelatase H subunit in plastid-to-nucleus signal transduction. Proc. Natl Acad. Sci. USA 98, 2053–2058 (2001)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  57. Muller, A. H. & Hansson, M. The barley magnesium chelatase 150-kDa subunit is not an abscisic-acid receptor. Plant Physiol. 150, 157–166 (2009)

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Liu, X. et al. A G protein-coupled receptor is a plasma membrane receptor for the plant hormone abscisic acid. Science 315, 1712–1716 (2007)

    ADS  CAS  PubMed  Google Scholar 

  59. Johnston, C. A. et al. Comment on “A G protein coupled receptor is a plasma membrane receptor for the plant hormone abscisic acid”. Science 318, 914; author reply 914 (2007)

    ADS  CAS  PubMed  Google Scholar 

  60. Guo, J., Zeng, Q., Emami, M., Ellis, B. E. & Chen, J. G. The GCR2 gene family is not required for ABA control of seed germination and early seedling development in Arabidopsis . PLoS One 3, e2982 (2008)

    ADS  PubMed  PubMed Central  Google Scholar 

  61. Gao, Y. et al. Genetic characterization reveals no role for the reported ABA receptor, GCR2, in ABA control of seed germination and early seedling development in Arabidopsis . Plant J. 52, 1001–1013 (2007)

    CAS  PubMed  Google Scholar 

  62. Risk, J. M., Day, C. L. & Macknight, R. C. Re-evaluation of abscisic acid (ABA) binding assays shows that GCR2 does not bind ABA. Plant Physiol. 150, 6–11 (2009)

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Park, S. Y. et al. Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science Epub ahead of print, 10.1126/science.1173041 (30 April 2009)

  64. Ma, Y. et al. Regulators of PP2C phosphatase activity function as abscisic acid sensors. Science Epub ahead of print, 10.1126/science.1172408 (8 May 2009)References 63 and 64 describe the identification of soluble abscisic-acid receptors. A novel model for abscisic-acid action is proposed, in which abscisic acid acts to inhibit PP2C proteins such as ABI1 and ABI2, by promoting an interaction between the phosphatase and PYR1/RCAR1 and related proteins.

  65. McCourt, P. & Creelman, R. The ABA receptors—we report, you decide. Curr. Opin. Plant Biol. 11, 474–478 (2008)

    CAS  PubMed  Google Scholar 

  66. Zhang, X., Garreton, V. & Chua, N. H. The AIP2 E3 ligase acts as a novel negative regulator of ABA signaling by promoting ABI3 degradation. Genes Dev. 19, 1532–1543 (2005)

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Stone, S. L., Williams, L. A., Farmer, L. M., Vierstra, R. D. & Callis, J. KEEP ON GOING, a RING E3 ligase essential for Arabidopsis growth and development, is involved in abscisic acid signaling. Plant Cell 18, 3415–3428 (2006)

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Solano, R., Stepanova, A., Chao, Q. & Ecker, J. R. Nuclear events in ethylene signaling: a transcriptional cascade mediated by ETHYLENE-INSENSITIVE3 and ETHYLENE-RESPONSE-FACTOR1. Genes Dev. 12, 3703–3714 (1998)

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Guo, H. & Ecker, J. R. Plant responses to ethylene gas are mediated by SCF(EBF1/EBF2)-dependent proteolysis of EIN3 transcription factor. Cell 115, 667–677 (2003)

    CAS  PubMed  Google Scholar 

  70. Potuschak, T. et al. EIN3-dependent regulation of plant ethylene hormone signaling by two Arabidopsis F box proteins: EBF1 and EBF2. Cell 115, 679–689 (2003)References 67 and 68 showed that the F-box proteins EBF1 and EBF2 were important regulators of EIN3 accumulation. The data demonstrate the pivital role of the ubiquitin-mediated degradation during ethylene signalling.

    CAS  PubMed  Google Scholar 

  71. Binder, B. M. et al. The Arabidopsis EIN3 binding F-box proteins EBF1 and EBF2 have distinct but overlapping roles in ethylene signaling. Plant Cell 19, 509–523 (2007)

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Qiao, H., Chang, K. N., Yazaki, J. & Ecker, J. R. Interplay between ethylene, ETP1/ETP2 F-box proteins, and degradation of EIN2 triggers ethylene responses in Arabidopsis . Genes Dev. 23, 512–521 (2009)

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Ongaro, V. & Leyser, O. Hormonal control of shoot branching. J. Exp. Bot. 59, 67–74 (2008)

    CAS  PubMed  Google Scholar 

  74. Stirnberg, P., van De Sande, K. & Leyser, H. M. MAX1 and MAX2 control shoot lateral branching in Arabidopsis . Development 129, 1131–1141 (2002)

    CAS  PubMed  Google Scholar 

  75. Johnson, X. et al. Branching genes are conserved across species. Genes controlling a novel signal in pea are coregulated by other long-distance signals. Plant Physiol. 142, 1014–1026 (2006)

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Wilson, A. K., Pickett, F. B., Turner, J. C. & Estelle, M. A dominant mutation in Arabidopsis confers resistance to auxin, ethylene and abscisic acid. Mol. Gen. Genet. 222, 377–383 (1990)

    CAS  PubMed  Google Scholar 

  77. Roman, G., Lubarsky, B., Kieber, J. J., Rothenberg, M. & Ecker, J. R. Genetic analysis of ethylene signal transduction in Arabidopsis thaliana: five novel mutant loci integrated into a stress response pathway. Genetics 139, 1393–1409 (1995)

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Stepanova, A. N., Hoyt, J. M., Hamilton, A. A. & Alonso, J. M. A link between ethylene and auxin uncovered by the characterization of two root-specific ethylene-insensitive mutants in Arabidopsis . Plant Cell 17, 2230–2242 (2005)

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Stepanova, A. N. et al. TAA1-mediated auxin biosynthesis is essential for hormone crosstalk and plant development. Cell 133, 177–191 (2008)

    CAS  PubMed  Google Scholar 

  80. Tao, Y. et al. Rapid synthesis of auxin via a new tryptophan-dependent pathway is required for shade avoidance in plants. Cell 133, 164–176 (2008)

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Tsuchisaka, A. & Theologis, A. Unique and overlapping expression patterns among the Arabidopsis 1-amino-cyclopropane-1-carboxylate synthase gene family members. Plant Physiol. 136, 2982–3000 (2004)

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Tsuchisaka, A. & Theologis, A. Heterodimeric interactions among the 1-amino-cyclopropane-1-carboxylate synthase polypeptides encoded by the Arabidopsis gene family. Proc. Natl Acad. Sci. USA 101, 2275–2280 (2004)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  83. Nagpal, P. et al. Auxin response factors ARF6 and ARF8 promote jasmonic acid production and flower maturation. Development 132, 4107–4118 (2005)

    CAS  PubMed  Google Scholar 

  84. Feraru, E. & Friml, J. PIN polar targeting. Plant Physiol. 147, 1553–1559 (2008)

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Laplaze, L. et al. Cytokinins act directly on lateral root founder cells to inhibit root initiation. Plant Cell 19, 3889–3900 (2007)

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Blilou, I. et al. The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots. Nature 433, 39–44 (2005)

    ADS  CAS  PubMed  Google Scholar 

  87. Nemhauser, J. L., Mockler, T. C. & Chory, J. Interdependency of brassinosteroid and auxin signaling in Arabidopsis . PLoS Biol. 2, E258 (2004)

    PubMed  PubMed Central  Google Scholar 

  88. Goda, H. et al. Comprehensive comparison of auxin-regulated and brassinosteroid-regulated genes in Arabidopsis . Plant Physiol. 134, 1555–1573 (2004)

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Mouchel, C. F., Osmont, K. S. & Hardtke, C. S. BRX mediates feedback between brassinosteroid levels and auxin signalling in root growth. Nature 443, 458–461 (2006)

    ADS  CAS  PubMed  Google Scholar 

  90. Vert, G., Walcher, C. L., Chory, J. & Nemhauser, J. L. Integration of auxin and brassinosteroid pathways by Auxin Response Factor 2. Proc. Natl Acad. Sci. USA 105, 9829–9834 (2008)This paper elucidated an interesting molecular crosstalk strategy in which the brassinosteroid-regulated BIN2 kinase directly regulates ARF2, thereby modulating auxin signalling.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  91. Weiss, D. & Ori, N. Mechanisms of cross talk between gibberellin and other hormones. Plant Physiol. 144, 1240–1246 (2007)

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Fu, X. & Harberd, N. P. Auxin promotes Arabidopsis root growth by modulating gibberellin response. Nature 421, 740–743 (2003)

    ADS  CAS  PubMed  Google Scholar 

  93. Achard, P., Vriezen, W. H., Van Der Straeten, D. & Harberd, N. P. Ethylene regulates Arabidopsis development via the modulation of DELLA protein growth repressor function. Plant Cell 15, 2816–2825 (2003)

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Achard, P. et al. Integration of plant responses to environmentally activated phytohormonal signals. Science 311, 91–94 (2006)

    ADS  CAS  PubMed  Google Scholar 

  95. Navarro, L. et al. DELLAs control plant immune responses by modulating the balance of jasmonic acid and salicylic acid signaling. Curr. Biol. 18, 650–655 (2008)

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Work in M.E.’s laboratory was supported by grants from the NIH (GM43644), the NSF (IOS 0744800), and the DOE (DOE DE-FG02-02ER15312) to M.E.

Author Contributions A.S. and M.E. generated an outline together. A.S. prepared the first draft of the article and A.S. and M.E. worked together on all subsequent drafts.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Estelle.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Santner, A., Estelle, M. Recent advances and emerging trends in plant hormone signalling. Nature 459, 1071–1078 (2009). https://doi.org/10.1038/nature08122

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature08122

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing