Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Reconstitution of Rab- and SNARE-dependent membrane fusion by synthetic endosomes

An Author Correction to this article was published on 25 January 2024

This article has been updated

Abstract

Rab GTPases and SNAREs (soluble N-ethylmaleimide-sensitive factor attachment protein receptors) are evolutionarily conserved essential components of the eukaryotic intracellular transport system. Although pairing of cognate SNAREs is sufficient to fuse membranes in vitro, a complete reconstitution of the Rab–SNARE machinery has never been achieved. Here we report the reconstitution of the early endosomal canine Rab5 GTPase, its key regulators and effectors together with SNAREs into proteoliposomes using a set of 17 recombinant human proteins. These vesicles behave like minimal ‘synthetic’ endosomes, fusing with purified early endosomes or with each other in vitro. Membrane fusion measured by content-mixing and morphological assays requires the cooperativity between Rab5 effectors and cognate SNAREs which, together, form a more efficient ‘core machinery’ than SNAREs alone. In reconstituting a fusion mechanism dependent on both a Rab GTPase and SNAREs, our work shows that the two machineries act coordinately to increase the specificity and efficiency of the membrane tethering and fusion process.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Rab5 effectors and SNARE priming factors can substitute cytosol in the homotypic fusion between early endosomes in vitro.
Figure 2: Recruitment of Rab5, EEA1 and rabenosyn-5 on proteoliposomes.
Figure 3: The Rab5 machinery and SNAREs cooperatively promote membrane fusion.
Figure 4: Molecular requirements for membrane fusion.
Figure 5: Electron microscopic analysis of proteoliposomes stained with uranyl acetate (a–d) or ammonium molybdenum (e).

Similar content being viewed by others

Change history

References

  1. Pfeffer, S. R. Transport-vesicle targeting: tethers before SNAREs. Nature Cell Biol.1, E17–E22 (1999)

    Article  CAS  PubMed  Google Scholar 

  2. Zerial, M. & McBride, H. Rab proteins as membrane organizers. Nature Rev. Mol. Cell Biol.2, 107–117 (2001)

    Article  CAS  Google Scholar 

  3. Grosshans, B. L., Ortiz, D. & Novick, P. Rabs and their effectors: achieving specificity in membrane traffic. Proc. Natl Acad. Sci. USA103, 11821–11827 (2006)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  4. Jahn, R. & Scheller, R. H. SNAREs—engines for membrane fusion. Nature Rev. Mol. Cell Biol.7, 631–643 (2006)

    Article  CAS  Google Scholar 

  5. McNew, J. A. et al. Compartmental specificity of cellular membrane fusion encoded in SNARE proteins. Nature407, 153–159 (2000)

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Rothman, J. E. & Sollner, T. H. Throttles and dampers: controlling the engine of membrane fusion. Science276, 1212–1213 (1997)

    Article  CAS  PubMed  Google Scholar 

  7. Cai, H., Reinisch, K. & Ferro-Novick, S. Coats, tethers, Rabs, and SNAREs work together to mediate the intracellular destination of a transport vesicle. Dev. Cell12, 671–682 (2007)

    Article  CAS  PubMed  Google Scholar 

  8. Christoforidis, S., McBride, H. M., Burgoyne, R. D. & Zerial, M. The Rab5 effector EEA1 is a core component of endosome docking. Nature397, 621–625 (1999)

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Wang, L., Merz, A. J., Collins, K. M. & Wickner, W. Hierarchy of protein assembly at the vertex ring domain for yeast vacuole docking and fusion. J. Cell Biol.160, 365–374 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Weber, T. et al. SNAREpins: minimal machinery for membrane fusion. Cell92, 759–772 (1998)

    Article  CAS  PubMed  Google Scholar 

  11. Wickner, W. & Schekman, R. Membrane fusion. Nature Struct. Mol. Biol.15, 658–664 (2008)

    Article  CAS  Google Scholar 

  12. Zimmerberg, J. & Gawrisch, K. The physical chemistry of biological membranes. Nature Chem. Biol.2, 564–567 (2006)

    Article  CAS  Google Scholar 

  13. Schuette, C. G. et al. Determinants of liposome fusion mediated by synaptic SNARE proteins. Proc. Natl Acad. Sci. USA101, 2858–2863 (2004)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  14. Fix, M. et al. Imaging single membrane fusion events mediated by SNARE proteins. Proc. Natl Acad. Sci. USA101, 7311–7316 (2004)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  15. Liu, T. et al. SNARE-driven, 25-millisecond vesicle fusion in vitro . Biophys. J.89, 2458–2472 (2005)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  16. Parlati, F. et al. Rapid and efficient fusion of phospholipid vesicles by the alpha-helical core of a SNARE complex in the absence of an N-terminal regulatory domain. Proc. Natl Acad. Sci. USA96, 12565–12570 (1999)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  17. Pobbati, A. V., Stein, A. & Fasshauer, D. N- to C-terminal SNARE complex assembly promotes rapid membrane fusion. Science313, 673–676 (2006)

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Brandhorst, D. et al. Homotypic fusion of early endosomes: SNAREs do not determine fusion specificity. Proc. Natl Acad. Sci. USA103, 2701–2706 (2006)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sonnichsen, B. et al. Distinct membrane domains on endosomes in the recycling pathway visualized by multicolor imaging of Rab4, Rab5, and Rab11. J. Cell Biol.149, 901–914 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Barbero, P., Bittova, L. & Pfeffer, S. R. Visualization of Rab9-mediated vesicle transport from endosomes to the trans-Golgi in living cells. J. Cell Biol.156, 511–518 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Horiuchi, H. et al. A novel Rab5 GDP/GTP exchange factor complexed to Rabaptin-5 links nucleotide exchange to effector recruitment and function. Cell90, 1149–1159 (1997)

    Article  CAS  PubMed  Google Scholar 

  22. Christoforidis, S. et al. Phosphatidylinositol-3-OH kinases are Rab5 effectors. Nature Cell Biol.1, 249–252 (1999)

    Article  CAS  PubMed  Google Scholar 

  23. Shin, H. W. et al. An enzymatic cascade of Rab5 effectors regulates phosphoinositide turnover in the endocytic pathway. J. Cell Biol.170, 607–618 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Nielsen, E. et al. Rabenosyn-5, a novel Rab5 effector, is complexed with hVPS45 and recruited to endosomes through a FYVE finger domain. J. Cell Biol.151, 601–612 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Schnatwinkel, C. et al. The Rab5 effector Rabankyrin-5 regulates and coordinates different endocytic mechanisms. PLoS Biol.2, 1363–1380 (2004)

    Article  CAS  Google Scholar 

  26. McBride, H. M. et al. Oligomeric complexes link Rab5 effectors with NSF and drive membrane fusion via interactions between EEA1 and syntaxin 13. Cell98, 377–386 (1999)

    Article  CAS  PubMed  Google Scholar 

  27. Hoepfner, S. et al. Modulation of receptor recycling and degradation by the endosomal kinesin KIF16B. Cell121, 437–450 (2005)

    Article  CAS  PubMed  Google Scholar 

  28. Del Conte-Zerial, P. et al. Membrane identity and GTPase cascades regulated by toggle and cut-out switches. Mol. Syst. Biol.4, 206 (2008)

    Article  PubMed  PubMed Central  Google Scholar 

  29. Zwilling, D. et al. Early endosomal SNAREs form a structurally conserved SNARE complex and fuse liposomes with multiple topologies. EMBO J.26, 9–18 (2007)

    Article  CAS  PubMed  Google Scholar 

  30. Bhalla, A., Chicka, M. C., Tucker, W. C. & Chapman, E. R. Ca2+-synaptotagmin directly regulates t-SNARE function during reconstituted membrane fusion. Nature Struct. Mol. Biol.13, 323–330 (2006)

    Article  CAS  Google Scholar 

  31. Dennison, S. M., Bowen, M. E., Brunger, A. T. & Lentz, B. R. Neuronal SNAREs do not trigger fusion between synthetic membranes but do promote PEG-mediated membrane fusion. Biophys. J.90, 1661–1675 (2006)

    Article  ADS  CAS  PubMed  Google Scholar 

  32. Starai, V. J., Jun, Y. & Wickner, W. Excess vacuolar SNAREs drive lysis and Rab bypass fusion. Proc. Natl Acad. Sci. USA104, 13551–13558 (2007)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ullrich, O., Horiuchi, H., Bucci, C. & Zerial, M. Membrane association of Rab5 mediated by GDP-dissociation inhibitor and accompanied by GDP/GTP exchange. Nature368, 157–160 (1994)

    Article  ADS  CAS  PubMed  Google Scholar 

  34. Mayer, A., Wickner, W. & Haas, A. Sec18p (NSF)-driven release of Sec17p (α-SNAP) can precede docking and fusion of yeast vacuoles. Cell85, 83–94 (1996)

    Article  CAS  PubMed  Google Scholar 

  35. Rybin, V. et al. GTPase activity of Rab5 acts as a timer for endocytic membrane fusion. Nature383, 266–269 (1996)

    Article  ADS  CAS  PubMed  Google Scholar 

  36. Sivars, U., Aivazian, D. & Pfeffer, S. R. Yip3 catalyses the dissociation of endosomal Rab–GDI complexes. Nature425, 856–859 (2003)

    Article  ADS  CAS  PubMed  Google Scholar 

  37. Simonsen, A., Gaullier, J. M., D'Arrigo, A. & Stenmark, H. The Rab5 effector EEA1 interacts directly with syntaxin-6. J. Biol. Chem.274, 28857–28860 (1999)

    Article  CAS  PubMed  Google Scholar 

  38. Ungermann, C., Price, A. & Wickner, W. A new role for a SNARE protein as a regulator of the Ypt7/Rab-dependent stage of docking. Proc. Natl Acad. Sci. USA97, 8889–8891 (2000)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mima, J. et al. Reconstituted membrane fusion requires regulatory lipids, SNAREs and synergistic SNARE chaperones. EMBO J.27, 2031–2042 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Takamori, S. et al. Molecular anatomy of a trafficking organelle. Cell127, 831–846 (2006)

    Article  CAS  PubMed  Google Scholar 

  41. Weber, T. et al. SNAREpins are functionally resistant to disruption by NSF and alphaSNAP. J. Cell Biol.149, 1063–1072 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Collins, K. M. & Wickner, W. T. Trans-SNARE complex assembly and yeast vacuole membrane fusion. Proc. Natl Acad. Sci. USA104, 8755–8760 (2007)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kobayashi, T. et al. A lipid associated with the antiphospholipid syndrome regulates endosome structure and function. Nature392, 193–197 (1998)

    Article  ADS  CAS  PubMed  Google Scholar 

  44. Pfeffer, S. & Aivazian, D. Targeting Rab GTPases to distinct membrane compartments. Nature Rev. Mol. Cell Biol.5, 886–896 (2004)

    Article  CAS  Google Scholar 

  45. Dulubova, I. et al. Munc18–1 binds directly to the neuronal SNARE complex. Proc. Natl Acad. Sci. USA104, 2697–2702 (2007)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  46. Shen, J. et al. Selective activation of cognate SNAREpins by Sec1/Munc18 proteins. Cell128, 183–195 (2007)

    Article  CAS  PubMed  Google Scholar 

  47. Martens, S., Kozlov, M. M. & McMahon, H. T. How synaptotagmin promotes membrane fusion. Science316, 1205–1208 (2007)

    Article  ADS  CAS  PubMed  Google Scholar 

  48. Rink, J., Ghigo, E., Kalaidzidis, Y. & Zerial, M. Rab conversion as a mechanism of progression from early to late endosomes. Cell122, 735–749 (2005)

    Article  CAS  PubMed  Google Scholar 

  49. Peplowska, K. et al. The CORVET tethering complex interacts with the yeast Rab5 homolog Vps21 and is involved in endo-lysosomal biogenesis. Dev. Cell12, 739–750 (2007)

    Article  CAS  PubMed  Google Scholar 

  50. Bartlett, G. R. Colorimetric assay methods for free and phosphorylated glyceric acids. J. Biol. Chem.234, 469–471 (1959)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to K. Simons and B. Hoflack for discussions, to C. Stroupe and W. Wickner for sharing unpublished information, and to G. Marsne, I. Baines, W. Huttner, K. Simons, C. Stroupe and W. Wickner for critical reading of the manuscript. We acknowledge support by the systems biology network HepatoSys of the German Ministry for Education and Research (BMBF, grant 0313082J), the EU Integrated Project EndoTrack, the DFG and the Max Planck Society (including the Max Planck Partner Group grant to M.Z. and M.M.). T.O. was supported by The Nakatomi Foundation.

Author Contributions M.M. conducted the initial studies and tested the recombinant proteins in endosome fusion and the membrane recruitment of Rab5 and its effectors on proteoliposomes, and B.L. further developed such a proteoliposome system. D.D. and A.R. established several of the protocols of purification of recombinant proteins. T.O. completed the development of these procedures and conducted all biochemical experiments on membrane fusion reported in this study. Ü.C. performed the electron microscopy analysis, Y.K. did the statistical analysis and the mathematical model of membrane fusion, and M.Z. conceived and directed the project and wrote the manuscript with the help of T.O., M.M. and Y.K.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marino Zerial.

Supplementary information

Supplementary Information

This file contains Supplementary Methods, Supplementary References, Supplementary Figures 1-5 with Legends and Supplementary Table 1. (PDF 846 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ohya, T., Miaczynska, M., Coskun, Ü. et al. Reconstitution of Rab- and SNARE-dependent membrane fusion by synthetic endosomes. Nature 459, 1091–1097 (2009). https://doi.org/10.1038/nature08107

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature08107

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing