A soma-to-germline transformation in long-lived Caenorhabditis elegans mutants

Abstract

Unlike the soma, which ages during the lifespan of multicellular organisms, the germ line traces an essentially immortal lineage. Genomic instability in somatic cells increases with age, and this decline in somatic maintenance might be regulated to facilitate resource reallocation towards reproduction at the expense of cellular senescence. Here we show that Caenorhabditis elegans mutants with increased longevity exhibit a soma-to-germline transformation of gene expression programs normally limited to the germ line. Decreased insulin-like signalling causes the somatic misexpression of the germline-limited pie-1 and pgl family of genes in intestinal and ectodermal tissues. The forkhead boxO1A (FOXO) transcription factor DAF-16, the major transcriptional effector of insulin-like signalling, regulates pie-1 expression by directly binding to the pie-1 promoter. The somatic tissues of insulin-like mutants are more germline-like and protected from genotoxic stress. Gene inactivation of components of the cytosolic chaperonin complex that induce increased longevity also causes somatic misexpression of PGL-1. These results indicate that the acquisition of germline characteristics by the somatic cells of C. elegans mutants with increased longevity contributes to their increased health and survival.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Mutations in the insulin/IGF-like signalling pathway cause soma-to-germline transformation.
Figure 2: DAF-16 regulates the expression of pie-1.
Figure 3: The somatic misexpression of germline-specific genes in insulin-like signalling mutants contributes to their increased longevity.
Figure 4: The cytosolic chaperonin complex regulates the expression of PGL-1 in somatic cells.
Figure 5: Model for the regulation of germline gene expression in the soma by C. elegans longevity regulators.

References

  1. 1

    Curran, S. P. & Ruvkun, G. Lifespan regulation by evolutionarily conserved genes essential for viability. PLoS Genet. 3, e56 (2007)

    Article  Google Scholar 

  2. 2

    Garsin, D. A. et al. Long-lived C. elegans daf-2 mutants are resistant to bacterial pathogens. Science 300, 1921 (2003)

    CAS  Article  Google Scholar 

  3. 3

    Wang, D. & Ruvkun, G. Regulation of Caenorhabditis elegans RNA interference by the daf-2 insulin stress and longevity signaling pathway. Cold Spring Harb. Symp. Quant. Biol. 69, 429–431 (2004)

    CAS  Article  Google Scholar 

  4. 4

    Wilkins, C. et al. RNA interference is an antiviral defence mechanism in Caenorhabditis elegans . Nature 436, 1044–1047 (2005)

    ADS  CAS  Article  Google Scholar 

  5. 5

    Wang, D. et al. Somatic misexpression of germline P granules and enhanced RNA interference in retinoblastoma pathway mutants. Nature 436, 593–597 (2005)

    ADS  CAS  Article  Google Scholar 

  6. 6

    Batista, P. J. et al. PRG-1 and 21U-RNAs interact to form the piRNA complex required for fertility in C. elegans . Mol. Cell 31, 67–78 (2008)

    CAS  Article  Google Scholar 

  7. 7

    O'Neil, N. & Rose, A. DNA repair. WormBook Jan 13, 1–12 (2006)

    Google Scholar 

  8. 8

    Das, P. P. et al. Piwi and piRNAs act upstream of an endogenous siRNA pathway to suppress Tc3 transposon mobility in the Caenorhabditis elegans germline. Mol. Cell 31, 79–90 (2008)

    CAS  Article  Google Scholar 

  9. 9

    Gartner, A., Boag, P. R. & Blackwell, T. K. Germline survival and apoptosis. WormBook Sept 14, 1–20 (2008)

    Google Scholar 

  10. 10

    Robert, V. J., Sijen, T., van Wolfswinkel, J. & Plasterk, R. H. Chromatin and RNAi factors protect the C. elegans germline against repetitive sequences. Genes Dev. 19, 782–787 (2005)

    CAS  Article  Google Scholar 

  11. 11

    Kawasaki, I. et al. PGL-1, a predicted RNA-binding component of germ granules, is essential for fertility in C. elegans . Cell 94, 635–645 (1998)

    CAS  Article  Google Scholar 

  12. 12

    Mello, C. C., Draper, B., Krause, M., Weintraub, H. & Priess, J. The pie-1 and mex-1 genes and maternal control of blastomere identity in early C. elegans embryos. Cell 70, 163–176 (1992)

    CAS  Article  Google Scholar 

  13. 13

    Narbonne, P. & Roy, R. Inhibition of germline proliferation during C. elegans dauer development requires PTEN, LKB1 and AMPK signalling. Development 133, 611–619 (2006)

    CAS  Article  Google Scholar 

  14. 14

    Ogg, S. et al. The Fork head transcription factor DAF-16 transduces insulin-like metabolic and longevity signals in C. elegans . Nature 389, 994–999 (1997)

    ADS  CAS  Article  Google Scholar 

  15. 15

    Lin, K., Dorman, J. B., Rodan, A. & Kenyon, C. daf-16: An HNF-3/forkhead family member that can function to double the life-span of Caenorhabditis elegans . Science 278, 1319–1322 (1997)

    ADS  CAS  Article  Google Scholar 

  16. 16

    Kenyon, C., Chang, J., Gensch, E., Rudner, A. & Tabtiang, R. A. C. elegans mutant that lives twice as long as wild type. Nature 366, 461–464 (1993)

    ADS  CAS  Article  Google Scholar 

  17. 17

    Larsen, P. L. & Clarke, C. F. Extension of life-span in Caenorhabditis elegans by a diet lacking coenzyme Q. Science 295, 120–123 (2002)

    ADS  CAS  Article  Google Scholar 

  18. 18

    Houthoofd, K., Gems, D., Johnson, T. E. & Vanfleteren, J. R. Dietary restriction in the nematode Caenorhabditis elegans . Interdiscip. Top. Gerontol. 35, 98–114 (2007)

    CAS  PubMed  Google Scholar 

  19. 19

    Kaeberlein, T. L. et al. Lifespan extension in Caenorhabditis elegans by complete removal of food. Aging Cell 5, 487–494 (2006)

    CAS  Article  Google Scholar 

  20. 20

    Furuyama, T., Nakazawa, T., Nakano, I. & Mori, N. Identification of the differential distribution patterns of mRNAs and consensus binding sequences for mouse DAF-16 homologues. Biochem. J. 349, 629–634 (2000)

    CAS  Article  Google Scholar 

  21. 21

    Murphy, C. T. et al. Genes that act downstream of DAF-16 to influence the lifespan of Caenorhabditis elegans . Nature 424, 277–283 (2003)

    ADS  CAS  Article  Google Scholar 

  22. 22

    Oh, S. W. et al. Identification of direct DAF-16 targets controlling longevity, metabolism and diapause by chromatin immunoprecipitation. Nature Genet. 38, 251–257 (2006)

    Article  Google Scholar 

  23. 23

    Li, J. et al. Caenorhabditis elegans HCF-1 functions in longevity maintenance as a DAF-16 regulator. PLoS Biol. 6, e233 (2008)

    Article  Google Scholar 

  24. 24

    Dalley, B. K. & Golomb, M. Gene expression in the Caenorhabditis elegans dauer larva: developmental regulation of Hsp90 and other genes. Dev. Biol. 151, 80–90 (1992)

    CAS  Article  Google Scholar 

  25. 25

    Batchelder, C. et al. Transcriptional repression by the Caenorhabditis elegans germ-line protein PIE-1. Genes Dev. 13, 202–212 (1999)

    CAS  Article  Google Scholar 

  26. 26

    Unhavaithaya, Y. et al. MEP-1 and a homolog of the NURD complex component Mi-2 act together to maintain germline-soma distinctions in C. elegans . Cell 111, 991–1002 (2002)

    CAS  Article  Google Scholar 

  27. 27

    Beanan, M. J. & Strome, S. Characterization of a germ-line proliferation mutation in C. elegans . Development 116, 755–766 (1992)

    CAS  PubMed  Google Scholar 

  28. 28

    Arantes-Oliveira, N., Apfeld, J., Dillin, A. & Kenyon, C. Regulation of life-span by germ-line stem cells in Caenorhabditis elegans . Science 295, 502–505 (2002)

    ADS  CAS  Article  Google Scholar 

  29. 29

    Vijg, J. & Campisi, J. Puzzles, promises and a cure for ageing. Nature 454, 1065–1071 (2008)

    ADS  CAS  Article  Google Scholar 

  30. 30

    Kenyon, C. The plasticity of aging: insights from long-lived mutants. Cell 120, 449–460 (2005)

    CAS  Article  Google Scholar 

  31. 31

    van Haaften, G. et al. Identification of conserved pathways of DNA-damage response and radiation protection by genome-wide RNAi. Curr. Biol. 16, 1344–1350 (2006)

    CAS  Article  Google Scholar 

  32. 32

    Pothof, J. et al. Identification of genes that protect the C. elegans genome against mutations by genome-wide RNAi. Genes Dev. 17, 443–448 (2003)

    CAS  Article  Google Scholar 

  33. 33

    Hsin, H. & Kenyon, C. Signals from the reproductive system regulate the lifespan of C. elegans . Nature 399, 362–366 (1999)

    ADS  CAS  Article  Google Scholar 

  34. 34

    Cui, M., Kim, E. B. & Han, M. Diverse chromatin remodeling genes antagonize the Rb-involved SynMuv pathways in C. elegans . PLoS Genet. 2, e74 (2006)

    Article  Google Scholar 

  35. 35

    Kahn, N. W., Rea, S. L., Moyle, S., Kell, A. & Johnson, T. E. Proteasomal dysfunction activates the transcription factor SKN-1 and produces a selective oxidative-stress response in Caenorhabditis elegans . Biochem. J. 409, 205–213 (2008)

    CAS  Article  Google Scholar 

  36. 36

    An, J. H. & Blackwell, T. SKN-1 links C. elegans mesendodermal specification to a conserved oxidative stress response. Genes Dev. 17, 1882–1893 (2003)

    CAS  Article  Google Scholar 

  37. 37

    Tullet, J. M. et al. Direct inhibition of the longevity-promoting factor SKN-1 by insulin-like signaling in C. elegans . Cell 132, 1025–1038 (2008)

    CAS  Article  Google Scholar 

  38. 38

    Olsen, A., Vantipalli, M. C. & Lithgow, G. J. Checkpoint proteins control survival of the postmitotic cells in Caenorhabditis elegans . Science 312, 1381–1385 (2006)

    ADS  CAS  Article  Google Scholar 

  39. 39

    Kim, S. H., Holway, A. H., Wolff, S., Dillin, A. & Michael, W. M. SMK-1/PPH-4.1-mediated silencing of the CHK-1 response to DNA damage in early C. elegans embryos. J. Cell Biol. 179, 41–52 (2007)

    CAS  Article  Google Scholar 

  40. 40

    Wolff, S. et al. SMK-1, an essential regulator of DAF-16-mediated longevity. Cell 124, 1039–1053 (2006)

    CAS  Article  Google Scholar 

  41. 41

    D’Angelo, M. A., Raices, M., Panowski, S. H. & Hetzer, M. W. Age-dependent deterioration of nuclear pore complexes causes a loss of nuclear integrity in postmitotic cells. Cell 136, 284–295 (2009)

    Article  Google Scholar 

  42. 42

    Pinkston-Gosse, J. & Kenyon, C. DAF-16/FOXO targets genes that regulate tumor growth in Caenorhabditis elegans . Nature Genet. 39, 1403–1409 (2007)

    CAS  Article  Google Scholar 

  43. 43

    Libina, N., Berman, J. R. & Kenyon, C. Tissue-specific activities of C. elegans DAF-16 in the regulation of lifespan. Cell 115, 489–502 (2003)

    CAS  Article  Google Scholar 

  44. 44

    Wolkow, C. A., Kimura, K. D., Lee, M. S. & Ruvkun, G. Regulation of C. elegans life-span by insulinlike signaling in the nervous system. Science 290, 147–150 (2000)

    ADS  CAS  Article  Google Scholar 

  45. 45

    Murphy, C. T., Lee, S. J. & Kenyon, C. Tissue entrainment by feedback regulation of insulin gene expression in the endoderm of Caenorhabditis elegans . Proc. Natl Acad. Sci. USA 104, 19046–19050 (2007)

    ADS  CAS  Article  Google Scholar 

  46. 46

    Lee, M. H. & Schedl, T. Identification of in vivo mRNA targets of GLD-1, a maxi-KH motif containing protein required for C. elegans germ cell development. Genes Dev. 15, 2408–2420 (2001)

    CAS  Article  Google Scholar 

  47. 47

    Kim, J. K. et al. Functional genomic analysis of RNA interference in C. elegans . Science 308, 1164–1167 (2005)

    ADS  CAS  Article  Google Scholar 

  48. 48

    Brenner, S. The genetics of Caenorhabditis elegans . Genetics 77, 71–94 (1974)

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49

    Fire, A. et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans . Nature 391, 806–811 (1998)

    ADS  CAS  Article  Google Scholar 

Download references

Acknowledgements

Some strains were provided by the Caenorhabditis Genetics Center, which is funded by the National Institutes of Health National Center for Research Resources. We thank A. Conery, H. Gabel, J. Melo, E. O’Rourke, D. Simon, A. Soukas and M. Wang for reagents, discussion and reading of the manuscript; G. Seydoux and members of the Ruvkun, Ausubel and Kaplan laboratories for discussion; S. Strome for the pie-1p::gfp::pgl-1 strain and C. Mello for monoclonal antisera against PGL-1, S. S. Lee, S. Ercan and the Kingston laboratory for technical advice on ChIP. This work was supported by grants from the National Institutes of Health and the National Institute on Aging F32-AG026207 to S.P.C. and R01-AG016636 to G.R. and the European Molecular Biology Organization and the Human Frontier Science Program to C.G.R.

Author Contributions S.P.C. and G.R. conceived and designed the experiments. S.P.C., X.W. and C.G.R. performed the experiments. S.P.C. and G.R. wrote the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Gary Ruvkun.

Supplementary information

Supplementary Information

This file contains Supplementary Figures S1-S11 with Legends, Supplementary Tables S1-S3 and Supplementary References. (PDF 7960 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Curran, S., Wu, X., Riedel, C. et al. A soma-to-germline transformation in long-lived Caenorhabditis elegans mutants. Nature 459, 1079–1084 (2009). https://doi.org/10.1038/nature08106

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.