Letter | Published:

Nanomechanical measurements of a superconducting qubit

Nature volume 459, pages 960964 (18 June 2009) | Download Citation


The observation of the quantum states of motion of a macroscopic mechanical structure remains an open challenge in quantum-state preparation and measurement. One approach that has received extensive theoretical attention1,2,3,4,5,6,7,8,9,10,11,12,13 is the integration of superconducting qubits as control and detection elements in nanoelectromechanical systems (NEMS). Here we report measurements of a NEMS resonator coupled to a superconducting qubit, a Cooper-pair box. We demonstrate that the coupling results in a dispersive shift of the nanomechanical frequency that is the mechanical analogue of the ‘single-atom index effect’14 experienced by electromagnetic resonators in cavity quantum electrodynamics. The large magnitude of the dispersive interaction allows us to perform NEMS-based spectroscopy of the superconducting qubit, and enables observation of Landau–Zener interference effects—a demonstration of nanomechanical read-out of quantum interference.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1.

    , & Entanglement and decoherence of a micromechanical resonator via coupling to a Cooper-pair box. Phys. Rev. Lett. 88, 148301 (2002)

  2. 2.

    & Quantum measurement of a coupled nanomechanical resonator-Cooper-pair box system. Phys. Rev. B 68, 155311 (2003)

  3. 3.

    , , & Ground state cooling of mechanical resonators. Phys. Rev. B 69, 125339 (2004)

  4. 4.

    & Superconducting qubit storage and entanglement with nanomechanical resonators. Phys. Rev. Lett. 93, 070501 (2004)

  5. 5.

    Entanglement from a nanomechanical resonator weakly coupled to a single Cooper-pair box. Phys. Rev. B 72, 195411 (2005)

  6. 6.

    & Decoherence and recoherence in a vibrating rf SQUID. Phys. Rev. B 74, 174504 (2006)

  7. 7.

    , , & Probing tiny motions of nanomechanical resonators: classical or quantum mechanical? Phys. Rev. Lett. 97, 237201 (2006)

  8. 8.

    , & Continuous measurement of the energy eigenstates of a nanomechanical resonator without a non-demolition probe. Phys. Rev. Lett. 98, 147201 (2007)

  9. 9.

    & Using a qubit to measure photon-number statistics of a driven thermal oscillator. Phys. Rev. A 75, 042302 (2007)

  10. 10.

    et al. Single-qubit lasing and cooling at the Rabi frequency. Phys. Rev. Lett. 100, 037003 (2008)

  11. 11.

    , & Energy measurements and preparation of canonical phase states of a nano-mechanical resonator. Europhys. Lett. 82, 18003 (2008)

  12. 12.

    & Entanglement dynamics in a dispersively coupled qubit oscillator system. Phys. Rev. A 78, 042323 (2008)

  13. 13.

    & Probing the quantum coherence of a nanomechanical resonator using a superconducting qubit: I. Echo scheme. N. J. Phys. 10, 095004 (2008)

  14. 14.

    & Exploring the Quantum: Atoms, Cavities, and Photons (Oxford Univ. Press, 2006)

  15. 15.

    & Vacuum radiative level shift and spontaneous-emission linewidth of an atom in an optical resonator. Phys. Rev. Lett. 59, 2623–2626 (1987)

  16. 16.

    et al. Progressive field-state collapse and quantum non-demolition photon counting. Nature 448, 889–893 (2007)

  17. 17.

    et al. Observing the progressive decoherence of the “meter” in a quantum measurement. Phys. Rev. Lett. 77, 4887–4890 (1996)

  18. 18.

    et al. Resolving photon number states in a superconducting circuit. Nature 445, 515–518 (2007)

  19. 19.

    et al. Coherence times of dressed states of a superconducting qubit under extreme driving. Phys. Rev. Lett. 98, 257003 (2007)

  20. 20.

    , & Coherent control of macroscopic quantum states in a single-Cooper-pair box. Nature 398, 786–788 (1999)

  21. 21.

    , & Quantum-state engineering with Josephson junction devices. Rev. Mod. Phys. 73, 357–400 (2001)

  22. 22.

    et al. Direct observation of Josephson capacitance. Phys. Rev. Lett. 95, 206806 (2005)

  23. 23.

    et al. Observation of quantum capacitance in the Cooper-pair transistor. Phys. Rev. Lett. 95, 206807 (2005)

  24. 24.

    et al. Steady-state thermodynamics of non-equilibrium quasiparticles in a Cooper-pair box. Phys. Rev. B 76, 054501 (2007)

  25. 25.

    et al. Efficient and sensitive capacitive readout of nanomechanical resonator arrays. Nano Lett. 7, 120–126 (2007)

  26. 26.

    et al. ac Stark shift and dephasing of a superconducting qubit strongly coupled to a cavity field. Phys. Rev. Lett. 94, 123602 (2005)

  27. 27.

    et al. Continuous-time monitoring of Landau-Zener interference in a Cooper-pair box. Phys. Rev. Lett. 96, 187002 (2006)

  28. 28.

    et al. Observation of Berry’s phase in a solid-state qubit. Science 318, 1889–1892 (2007)

  29. 29.

    et al. Cooling a nanomechanical resonator with quantum back-action. Nature 443, 193–196 (2006)

  30. 30.

    , , & Single spin detection by magnetic resonance force microscopy. Nature 430, 329–332 (2004)

Download references


The authors would like to thank T. Duty, C. Wilson, G. Milburn, A. Doherty, E. Babourina-Brooks, A. Armour, A. Clerk and I. Bargatin for discussions; S. Stryker and A. Sears for assistance in constructing the measurement apparatus; and R. E. Muller for electron beam lithography. K.C.S. acknowledges support from the US National Science Foundation (DMR-0804567) and the Foundational Questions Institute (RFP2-08-27). M.D.L. acknowledges support from the Center for the Physics of Information, California Institute of Technology. Part of the research described in this publication was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the US National Aeronautics and Space Administration.

Author information


  1. Kavli Nanoscience Institute, Condensed Matter Physics, MS 114-36,

    • M. D. LaHaye
    • , J. Suh
    •  & M. L. Roukes
  2. Applied Physics, California Institute of Technology, Pasadena, California 91125, USA

    • K. C. Schwab
  3. Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109, USA

    • P. M. Echternach


  1. Search for M. D. LaHaye in:

  2. Search for J. Suh in:

  3. Search for P. M. Echternach in:

  4. Search for K. C. Schwab in:

  5. Search for M. L. Roukes in:

Corresponding author

Correspondence to M. L. Roukes.

Supplementary information

PDF files

  1. 1.

    Supplementary Information

    This file contains Supplementary Methods, Supplementary Discussion, Supplementary Notes, and Supplementary Figures S1-S8 and Legends.

About this article

Publication history






Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.