Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

An intermediate-mass black hole of over 500 solar masses in the galaxy ESO 243-49


Ultraluminous X-ray sources are extragalactic objects located outside the nucleus of the host galaxy with bolometric luminosities1 exceeding 1039 erg s-1. These extreme luminosities—if the emission is isotropic and below the theoretical (Eddington) limit, where the radiation pressure is balanced by the gravitational pressure—imply the presence of an accreting black hole with a mass of 102–105 solar masses (). The existence of such intermediate-mass black holes is in dispute, and though many candidates have been proposed, none are widely accepted as definitive. Here we report the detection of a variable X-ray source with a maximum 0.2–10 keV luminosity of up to 1.1 × 1042 erg s-1 in the edge-on spiral galaxy ESO 243-49, with an implied conservative lower limit for the mass of the black hole of 500.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: R-band optical image of ESO 243-49 obtained with the Very Large Telescope.
Figure 2: European Photon Imaging Camera X-ray spectra of HLX-1.


  1. Roberts, T. P. X-ray observations of ultraluminous X-ray sources. Astrophys. Space Sci. 311, 203–212 (2007)

    ADS  Article  Google Scholar 

  2. Miller, J. M., Fabbiano, G., Miller, M. C. & Fabian, A. C. X-ray spectroscopic evidence for intermediate-mass black holes: cool accretion disks in two ultraluminous X-ray sources. Astrophys. J. 585, L37–L40 (2003)

    ADS  Article  Google Scholar 

  3. Casella, P. et al. Weighing the black holes in ultraluminous X-ray sources through timing. Mon. Not. R. Astron. Soc. 387, 1707–1711 (2008)

    ADS  CAS  Article  Google Scholar 

  4. Noyola, E., Gebhardt, K. & Bergmann, M. Gemini and Hubble space telescope evidence for an intermediate-mass black hole in ω Centauri. Astrophys. J. 676, 1008–1015 (2008)

    ADS  Article  Google Scholar 

  5. Bekki, K. & Freeman, K. C. Formation of ω Centauri from an ancient nucleated dwarf galaxy in the young Galactic disc. Mon. Not. R. Astron. Soc. 346, L11–L15 (2003)

    ADS  Article  Google Scholar 

  6. Liu, J. & Di Stefano, R. An ultraluminous supersoft X-ray source in M81: an intermediate-mass black hole? Astrophys. J. 674, L73–L76 (2008)

    ADS  CAS  Article  Google Scholar 

  7. King, A. R. Accretion rates and beaming in ultraluminous X-ray sources. Mon. Not. R. Astron. Soc. 385, L113–L115 (2008)

    ADS  Article  Google Scholar 

  8. Fender, R. in Compact Stellar X-ray Sources (eds Lewin, W. & van der Klis, M.) 381–419 (Cambridge University Press, 2006)

    Book  Google Scholar 

  9. Watson, M. G. et al. The XMM-Newton serendipitous survey. VI. The second XMM-Newton serendipitous source catalogue. Astron. Astrophys. 493, 339–373 (2009)

    ADS  Article  Google Scholar 

  10. Afonso, J. et al. The phoenix deep survey: spectroscopic catalog. Astrophys. J. 624, 135–154 (2005)

    ADS  CAS  Article  Google Scholar 

  11. Miniutti, G. et al. Have we detected the most luminous ULX so far? Mon. Not. R. Astron. Soc. 373, L1–L5 (2006)

    ADS  Article  Google Scholar 

  12. Hurkett, C. P. et al. Line searches in Swift X-ray spectra. Astrophys. J. 679, 587–606 (2008)

    ADS  CAS  Article  Google Scholar 

  13. Güdel, M. X-ray astronomy of stellar coronae. Astron. Astrophys. Rev. 12, 71–237 (2004)

    ADS  Article  Google Scholar 

  14. Immler, S. & Lewin, W. H. G. in Supernovae and Gamma-Ray Bursters (ed. Weiller, K.) 91–111 (Springer, 2003)

    Book  Google Scholar 

  15. Baskill, D. S., Wheatley, P. J. & Osborne, J. P. The complete set of ASCA X-ray observations of non-magnetic cataclysmic variables. Mon. Not. R. Astron. Soc. 357, 626–644 (2005)

    ADS  CAS  Article  Google Scholar 

  16. Hilton, E. J. et al. XMM-Newton observations of the cataclysmic variable GW Librae. Astron. J. 134, 1503–1507 (2007)

    ADS  CAS  Article  Google Scholar 

  17. Jonker, P. G. Constraining the neutron star equation of state using quiescent low-mass X-ray binaries. AIP Conf. Proc. 983, 519–526 (2008)

    ADS  CAS  Article  Google Scholar 

  18. Done, C., Gierliński, M. & Kubota, A. Modelling the behaviour of accretion flows in X-ray binaries. Astron. Astrophys. Rev. 15, 1–66 (2007)

    ADS  Article  Google Scholar 

  19. Giommi, P. et al. in Blazar Astrophysics with BeppoSAX and Other Observatories (eds Giommi, P., Massaro, E. & Palumbo, G.) 63–99 (ESA-ESRIN, 2002)

    Google Scholar 

  20. Turriziani, S., Cavazzuti, E. & Giommi, P. ROXA: a new multi-frequency large sample of blazars selected with SDSS and 2dF optical spectroscopy. Astron. Astrophys. 472, 669–704 (2007)

    Article  Google Scholar 

  21. Berghea, C. T., Weaver, K. A., Colbert, E. J. M. & Roberts, T. P. Testing the paradigm that ultra-luminous X-ray sources as a class represent accreting intermediate-mass black holes. Astrophys. J. 687, 471–487 (2008)

    ADS  CAS  Article  Google Scholar 

  22. Freeland, M., Kuncic, Z., Soria, R. & Bicknell, G. V. Radio and X-ray properties of relativistic beaming models for ultraluminous X-ray sources. Mon. Not. R. Astron. Soc. 372, 630–638 (2006)

    ADS  CAS  Article  Google Scholar 

  23. Abramowicz, M. A., Ellis, G. F. R. & Lanza, A. Relativistic effects in superluminal jets and neutron star winds. Astrophys. J. 361, 470–492 (1990)

    ADS  Article  Google Scholar 

  24. Begelman, M. C. Super-Eddington fluxes from thin accretion disks? Astrophys. J. 568, L97–L100 (2002)

    ADS  Article  Google Scholar 

  25. Kalberla, P. M. W. et al. The Leiden/Argentine/Bonn (LAB) survey of Galactic HI. Final data release of the combined LDS and IAR surveys with improved stray-radiation corrections. Astron. Astrophys. 440, 775–782 (2005)

    ADS  CAS  Article  Google Scholar 

Download references


We thank N. Schartel for granting an observation under the XMM-Newton project scientist discretionary time programme. We thank R. Belmont, A. King, J.-P. Lasota, K. Mukai, T. Roberts, S. Rosen, S. Sembay and M. Watson for discussions. S.A.F. acknowledges funding from the CNES. S.A.F. and O.G. acknowledge STFC funding. This work made use of the 2XMM Serendipitous Source Catalogue constructed by the XMM-Newton Survey Science Centre on behalf of ESA. We thank the Swift team for performing a TOO observation that provided justification for an additional observation with XMM-Newton. This work was based on observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and NASA.

Author information

Authors and Affiliations


Corresponding authors

Correspondence to Sean A. Farrell or Natalie A. Webb.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Farrell, S., Webb, N., Barret, D. et al. An intermediate-mass black hole of over 500 solar masses in the galaxy ESO 243-49. Nature 460, 73–75 (2009).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing