Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Flipping of alkylated DNA damage bridges base and nucleotide excision repair

Abstract

Alkyltransferase-like proteins (ATLs) share functional motifs with the cancer chemotherapy target O6-alkylguanine-DNA alkyltransferase (AGT) and paradoxically protect cells from the biological effects of DNA alkylation damage, despite lacking the reactive cysteine and alkyltransferase activity of AGT. Here we determine Schizosaccharomyces pombe ATL structures without and with damaged DNA containing the endogenous lesion O6-methylguanine or cigarette-smoke-derived O6-4-(3-pyridyl)-4-oxobutylguanine. These results reveal non-enzymatic DNA nucleotide flipping plus increased DNA distortion and binding pocket size compared to AGT. Our analysis of lesion-binding site conservation identifies new ATLs in sea anemone and ancestral archaea, indicating that ATL interactions are ancestral to present-day repair pathways in all domains of life. Genetic connections to mammalian XPG (also known as ERCC5) and ERCC1 in S. pombe homologues Rad13 and Swi10 and biochemical interactions with Escherichia coli UvrA and UvrC combined with structural results reveal that ATLs sculpt alkylated DNA to create a genetic and structural intersection of base damage processing with nucleotide excision repair.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Atl1 structure and lesion-binding site.
Figure 2: Atl1 DNA binding and damage sculpting.
Figure 3: Atl1 DNA lesion binding affinity and stoichiometry.
Figure 4: Biochemical and genetic connection of Atl1 to NER.
Figure 5: Alkyl-G lesion recognition allows NER repair of relatively non-distorting base lesions.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Data deposits

Atomic coordinates and structure factors for the reported crystal structures have been deposited in the Protein Data Bank under accession codes 3GVA (Atl1), 3GX4 (Atl1–O6-mG-DNA) and 3GYH (Atl1–O6-pobG-DNA).

References

  1. Pegg, A. E. Repair of O6-alkylguanine by alkyltransferases. Mutat. Res. 462, 83–100 (2000)

    Article  CAS  Google Scholar 

  2. Tubbs, J. L., Pegg, A. E. & Tainer, J. A. DNA binding, nucleotide flipping, and the helix-turn-helix motif in base repair by O6-alkylguanine-DNA alkyltransferase and its implications for cancer chemotherapy. DNA Repair (Amst.) 6, 1100–1115 (2007)

    Article  CAS  Google Scholar 

  3. Loechler, E. L., Green, C. L. & Essigmann, J. M. In vivo mutagenesis by O6-methylguanine built into a unique site in a viral genome. Proc. Natl Acad. Sci. USA 81, 6271–6275 (1984)

    Article  ADS  CAS  Google Scholar 

  4. Pauly, G. T., Hughes, S. H. & Moschel, R. C. Comparison of mutagenesis by O6-methyl- and O6-ethylguanine and O4-methylthymine in Escherichia coli using double-stranded and gapped plasmids. Carcinogenesis 19, 457–461 (1998)

    Article  CAS  Google Scholar 

  5. Margison, G. P. & Santibáñez-Koref, M. F. O6-Alkylguanine-DNA alkyltransferase: role in carcinogenesis and chemotherapy. Bioessays 24, 255–266 (2002)

    Article  CAS  Google Scholar 

  6. Mitra, S. & Kaina, B. Regulation of repair of alkylation damage in mammalian genomes. Prog. Nucleic Acid Res. Mol. Biol. 44, 109–142 (1993)

    Article  CAS  Google Scholar 

  7. Pegg, A. E., Dolan, M. E. & Moschel, R. C. Structure, function and inhibition of O6-alkylguanine-DNA alkyltransferase. Prog. Nucleic Acid Res. Mol. Biol. 51, 167–223 (1995)

    Article  CAS  Google Scholar 

  8. Daniels, D. S. & Tainer, J. A. Conserved structural motifs governing the stoichiometric repair of alkylated DNA by O6-alkylguanine-DNA alkyltransferase. Mutat. Res. 460, 151–163 (2000)

    Article  CAS  Google Scholar 

  9. Daniels, D. S. et al. Active and alkylated human AGT structures: a novel zinc site, inhibitor and extrahelical base binding. EMBO J. 19, 1719–1730 (2000)

    Article  CAS  Google Scholar 

  10. Wibley, J. E. A., Pegg, A. E. & Moody, P. C. E. Crystal structure of the human O6-alkylguanine-DNA alkyltransferase. Nucleic Acids Res. 28, 393–401 (2000)

    Article  CAS  Google Scholar 

  11. Daniels, D. S. et al. DNA binding and nucleotide flipping by the human DNA repair protein AGT. Nature Struct. Mol. Biol. 11, 714–720 (2004)

    Article  CAS  Google Scholar 

  12. Duguid, E. M., Rice, P. A. & He, C. The structure of the human AGT protein bound to DNA and its implications for damage detection. J. Mol. Biol. 350, 657–666 (2005)

    Article  CAS  Google Scholar 

  13. Margison, G. P. et al. Alkyltransferase-like proteins. DNA Repair (Amst.) 6, 1222–1228 (2007)

    Article  CAS  Google Scholar 

  14. Pearson, S. J., Ferguson, J., Santibanez-Koref, M. & Margison, G. P. Inhibition of O6-methylguanine-DNA methyltransferase by an alkyltransferase-like protein from Escherichia coli . Nucleic Acids Res. 33, 3837–3844 (2005)

    Article  CAS  Google Scholar 

  15. Pearson, S. J. et al. A novel DNA damage recognition protein in Schizosaccharomyces pombe . Nucleic Acids Res. 34, 2347–2354 (2006)

    Article  CAS  Google Scholar 

  16. Chen, C. S. et al. A proteome chip approach reveals new DNA damage recognition activities in Escherichia coli . Nature Methods 5, 69–74 (2008)

    Article  CAS  Google Scholar 

  17. Morita, R., Nakagawa, N., Kuramitsu, S. & Masui, R. An O6-methylguanine-DNA methyltransferase-like protein from Thermus thermophilus interacts with a nucleotide excision repair protein. J. Biochem. 144, 267–277 (2008)

    Article  CAS  Google Scholar 

  18. Wang, L. et al. Pyridyloxobutyl adduct O6-[4-oxo-4-(3-pyridyl)butyl]guanine is present in 4-(acetoxymethylnitrosamino)-1-(3-pyridyl)-1-butanone-treated DNA and is a substrate for O6-alkylguanine-DNA alkyltransferase. Chem. Res. Toxicol. 10, 562–567 (1997)

    Article  ADS  CAS  Google Scholar 

  19. Mijal, R. S. et al. The repair of the tobacco specific nitrosamine derived adduct O6-[4-Oxo-4-(3-pyridyl)butyl]guanine by O6-alkylguanine-DNA alkyltransferase variants. Chem. Res. Toxicol. 17, 424–434 (2004)

    Article  CAS  Google Scholar 

  20. Mazon, G. et al. The alkyltransferase-like ybaZ gene product enhances nucleotide excision repair of O6-alkylguanine adducts in E. coli . DNA Repair (Amst.) (in the press)

  21. Hu, J., Ma, A. & Dinner, A. R. A two-step nucleotide-flipping mechanism enables kinetic discrimination of DNA lesions by AGT. Proc. Natl Acad. Sci. USA 105, 4615–4620 (2008)

    Article  ADS  CAS  Google Scholar 

  22. Rasimas, J. J., Pegg, A. E. & Fried, M. G. DNA-binding mechanism of O6-alkylguanine-DNA alkyltransferase. Effects of protein and DNA alkylation on complex stability. J. Biol. Chem. 278, 7973–7980 (2003)

    Article  CAS  Google Scholar 

  23. O'Donovan, A. et al. XPG endonuclease makes the 3′ incision in human DNA nucleotide excision-repair. Nature 371, 432–435 (1994)

    Article  ADS  CAS  Google Scholar 

  24. Klungland, A. & Lindahl, T. Second pathway for completion of human DNA base excision-repair: Reconstitution with purified proteins and requirement for DNase IV (FEN1). EMBO J. 16, 3341–3348 (1997)

    Article  CAS  Google Scholar 

  25. Yonemasu, R. et al. Characterization of the alternative excision repair pathway of UV-damaged DNA in Schizosaccharomyces pombe . Nucleic Acids Res. 25, 1553–1558 (1997)

    Article  CAS  Google Scholar 

  26. Putnam, N. H. et al. Sea anemone genome reveals ancestral eumetazoan gene repertoire and genomic organization. Science 317, 86–94 (2007)

    Article  ADS  CAS  Google Scholar 

  27. Elkins, J. G. et al. A korarchaeal genome reveals insights into the evolution of the Archaea. Proc. Natl Acad. Sci. USA 105, 8102–8107 (2008)

    Article  ADS  CAS  Google Scholar 

  28. Waters, E. et al. The genome of Nanoarchaeum equitans: insights into early archaeal evolution and derived parasitism. Proc. Natl Acad. Sci. USA 100, 12984–12988 (2003)

    Article  ADS  CAS  Google Scholar 

  29. Sedgwick, B. Repairing DNA-methylation damage. Nature Rev. Mol. Cell Biol. 5, 148–157 (2004)

    Article  CAS  Google Scholar 

  30. Hanawalt, P. C. & Spivak, G. Transcription-coupled DNA repair: two decades of progress and surprises. Nature Rev. Mol. Cell Biol. 9, 958–970 (2008)

    Article  CAS  Google Scholar 

  31. Samson, L., Thomale, J. & Rajewsky, M. F. Alternative pathways for the in vivo repair of O6-alkylguanine and O4-alkylthymine in Escherichia coli: the adaptive response and nucleotide excision repair. EMBO J. 7, 2261–2267 (1988)

    Article  CAS  Google Scholar 

  32. Voigt, J. M., Van Houten, B., Sancar, A. & Topal, M. D. Repair of O6-methylguanine by ABC excinuclease of Escherichia coli in vitro . J. Biol. Chem. 264, 5172–5176 (1989)

    CAS  PubMed  Google Scholar 

  33. Edara, S., Kanugula, S. & Pegg, A. E. Expression of the inactive C145A mutant human O6-alkylguanine-DNA alkyltransferase in E. coli increases cell killing and mutations by N-methyl-N'-nitro-N-nitrosoguanidine. Carcinogenesis 20, 103–108 (1999)

    Article  CAS  Google Scholar 

  34. Mellon, I. Transcription-coupled repair: a complex affair. Mutat. Res. 577, 155–161 (2005)

    Article  CAS  Google Scholar 

  35. Branum, M. E., Reardon, J. T. & Sancar, A. DNA repair excision nuclease attacks undamaged DNA. A potential source of spontaneous mutations. J. Biol. Chem. 276, 25421–25426 (2001)

    Article  CAS  Google Scholar 

  36. Viswanathan, A. & Doetsch, P. W. Effects of nonbulky DNA base damages on Escherichia coli RNA polymerase-mediated elongation and promoter clearance. J. Biol. Chem. 273, 21276–21281 (1998)

    Article  CAS  Google Scholar 

  37. Scrima, A. et al. Structural basis of UV DNA-damage recognition by the DDB1–DDB2 complex. Cell 135, 1213–1223 (2008)

    Article  CAS  Google Scholar 

  38. Min, J. H. & Pavletich, N. P. Recognition of DNA damage by the Rad4 nucleotide excision repair protein. Nature 449, 570–575 (2007)

    Article  ADS  CAS  Google Scholar 

  39. Mol, C. D., Izumi, T., Mitra, S. & Tainer, J. A. DNA-bound structures and mutants reveal abasic DNA binding by APE1 and DNA repair coordination. Nature 403, 451–456 (2000)

    Article  ADS  CAS  Google Scholar 

  40. Chapados, B. R. et al. Structural basis for FEN-1 substrate specificity and PCNA-mediated activation in DNA replication and repair. Cell 116, 39–50 (2004)

    Article  CAS  Google Scholar 

  41. Parikh, S. S. et al. Uracil-DNA glycosylase-DNA substrate and product structures: conformational strain promotes catalytic efficiency by coupled stereoelectronic effects. Proc. Natl Acad. Sci. USA 97, 5083–5088 (2000)

    Article  ADS  CAS  Google Scholar 

  42. Garcin, E. D. et al. DNA apurinic-apyrimidinic site binding and excision by endonuclease IV. Nature Struct. Mol. Biol. 15, 515–522 (2008)

    Article  CAS  Google Scholar 

  43. Williams, R. S. et al. Mre11 dimers coordinate DNA end bridging and nuclease processing in double-strand-break repair. Cell 135, 97–109 (2008)

    Article  CAS  Google Scholar 

  44. Cline, S. D. & Hanawalt, P. C. Who’s on first in the cellular response to DNA damage? Nature Rev. Mol. Cell Biol. 4, 361–372 (2003)

    Article  CAS  Google Scholar 

  45. Hitomi, K., Iwai, S. & Tainer, J. A. The intricate structural chemistry of base excision repair machinery: implications for DNA damage recognition, removal, and repair. DNA Repair (Amst.) 6, 410–428 (2007)

    Article  CAS  Google Scholar 

  46. Hickman, M. J. & Samson, L. D. Role of DNA mismatch repair and p53 in signaling induction of apoptosis by alkylating agents. Proc. Natl Acad. Sci. USA 96, 10764–10769 (1999)

    Article  ADS  CAS  Google Scholar 

  47. Marcotte, E. M. et al. Detecting protein function and protein–protein interactions from genome sequences. Science 285, 751–753 (1999)

    Article  CAS  Google Scholar 

  48. Kanugula, S., Pauly, G. T., Moschel, R. C. & Pegg, A. E. A bifunctional DNA repair protein from Ferroplasma acidarmanus exhibits O6-alkylguanine-DNA alkyltransferase and endonuclease V activities. Proc. Natl Acad. Sci. USA 102, 3617–3622 (2005)

    Article  ADS  CAS  Google Scholar 

  49. Dalhus, B. et al. Structures of endonuclease V with DNA reveal initiation of deaminated adenine repair. Nature Struct. Mol. Biol. 16, 138–143 (2009)

    Article  CAS  Google Scholar 

  50. Scharer, O. D. & Campbell, A. J. Wedging out DNA damage. Nature Struct. Mol. Biol. 16, 102–104 (2009)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank C. C. Vu and J. Gong for aiding in the synthesis of O6-pobG oligomers, M. N. Boddy, J. Prudden and A. Sarker for performing genetics and biochemical experiments, G. Guenther, S. Pebernard, R. S. Williams, J. J. Perry, B. R. Chapados, M. Bjorås, D. S. Shin, K. Hitomi, C. Hitomi, E. D. Getzoff, G. Williams, S. Tsutakawa and P. K. Cooper for suggestions, and the staff at the Advanced Light Source (ALS) SIBYLS beamline and the Stanford Synchrotron Radiation Laboratory (SSRL). Operations at SSRL and ALS are supported by the US Department of Energy and NIH. This work was supported by National Institutes of Health grants CA097209 (J.A.T., A.E.P.), CA018137 (A.E.P.), GM070662 (M.G.F.), and CA59887 (L.A.P.), The Skaggs Institute for Chemical Biology (J.L.T.), North West Cancer Research Fund grant CR675 (O.F.), Cancer Research-UK (G.P.M.) and CHEMORES (G.P.M.).

Author Contributions M.D.K. and J.L.T. purified Atl1 protein and prepared Atl1–oligomer complexes for crystallization. A.S.A. and J.L.T. crystallized Atl1 and collected, processed and refined X-ray data. O6-pobG oligomers were synthesized by L.A.P. for crystallization and by C.M. and D.M.W. for surface plasmon resonance. A.J.W. and B.V. designed and synthesized oligonucleotides that contributed to the surface plasmon resonance data. A.M. and A.J.W. produced and characterized pure Atl1 protein for the surface plasmon resonance analyses. G.M. and M.T. performed surface plasmon resonance analyses. M.M. and M.G.F. performed electrophoretic mobility shift assays and analytical ultracentrifugation experiments and analysed the results. V.L. and A.B. generated Atl1 single and double deletants and Atl1-complement in S. pombe and carried out spot and clonogenic assays. R.K. and O.F. carried out the mutation assays in S. pombe. S.K. prepared constructs for and purified Atl1, E. coli Atl, N. vectensis ATL, AGT C145S, UvrA, UvrB and UvrC, and performed far western analyses, Atl1 expression assays in E. coli and ATL inhibition assays. M.F.S.-K. contributed intellectually to the initiation and design of the studies at the Paterson Institute. O.F., G.P.M., A.E.P. and J.A.T. provided intellectual guidance and research support. J.L.T. and J.A.T. wrote the paper. All authors discussed the results and manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anthony E. Pegg or John A. Tainer.

Supplementary information

Supplementary Information

This file contains Supplementary Methods and Data, Supplementary References, Supplementary Tables 1- 4 and Supplementary Figures 1-7 with Legends. Supplementary Table 1 was replaced on 18 June, 2009. (PDF 3602 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tubbs, J., Latypov, V., Kanugula, S. et al. Flipping of alkylated DNA damage bridges base and nucleotide excision repair. Nature 459, 808–813 (2009). https://doi.org/10.1038/nature08076

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature08076

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing