Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Yurt, Coracle, Neurexin IV and the Na+,K+-ATPase form a novel group of epithelial polarity proteins

Abstract

The integrity of polarized epithelia is critical for development and human health. Many questions remain concerning the full complement and the function of the proteins that regulate cell polarity1. Here we report that the Drosophila FERM proteins Yurt (Yrt)2 and Coracle (Cora)3 and the membrane proteins Neurexin IV (Nrx-IV)4 and Na+,K+-ATPase5 are a new group of functionally cooperating epithelial polarity proteins. This ‘Yrt/Cora group’ promotes basolateral membrane stability and shows negative regulatory interactions with the apical determinant Crumbs (Crb). Genetic analyses indicate that Nrx-IV and Na+,K+-ATPase act together with Cora in one pathway, whereas Yrt acts in a second redundant pathway. Moreover, we show that the Yrt/Cora group is essential for epithelial polarity during organogenesis but not when epithelial polarity is first established or during terminal differentiation. This property of Yrt/Cora group proteins explains the recovery of polarity in embryos lacking the function of the Lethal giant larvae (Lgl) group of basolateral polarity proteins6,7. We also find that the mammalian Yrt orthologue EPB41L5 (also known as YMO1 and Limulus)8,9,10 is required for lateral membrane formation, indicating a conserved function of Yrt proteins in epithelial polarity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Synergistic interactions between Yrt, Na + ,K + -ATPase and Nrx-IV.
Figure 2: Excessive apicalization in cora yrt double mutants and embryos overexpressing Crb.
Figure 3: Mutations in Yrt/Cora-group genes suppress the crb mutant phenotype.
Figure 4: Knockdown of EPB41L5 in MDCK cells compromises lateral membrane formation.

Similar content being viewed by others

References

  1. Nelson, W. J. Adaptation of core mechanisms to generate cell polarity. Nature 422, 766–774 (2003)

    Article  ADS  CAS  Google Scholar 

  2. Laprise, P. et al. The FERM protein Yurt is a negative regulatory component of the Crumbs complex that controls epithelial polarity and apical membrane size. Dev. Cell 11, 363–374 (2006)

    Article  CAS  Google Scholar 

  3. Fehon, R. G., Dawson, I. A. & Artavanis-Tsakonas, S. A Drosophila homologue of membrane-skeleton protein 4.1 is associated with septate junctions and is encoded by the coracle gene. Development 120, 545–557 (1994)

    CAS  PubMed  Google Scholar 

  4. Baumgartner, S. et al. A Drosophila neurexin is required for septate junction and blood-nerve barrier formation and function. Cell 87, 1059–1068 (1996)

    Article  CAS  Google Scholar 

  5. Paul, S. M., Ternet, M., Salvaterra, P. M. & Beitel, G. J. The Na+/K+ ATPase is required for septate junction function and epithelial tube-size control in the Drosophila tracheal system. Development 130, 4963–4974 (2003)

    Article  CAS  Google Scholar 

  6. Tanentzapf, G. & Tepass, U. Interactions between the crumbs, lethal giant larvae and bazooka pathways in epithelial polarization. Nature Cell Biol. 5, 46–52 (2003)

    Article  CAS  Google Scholar 

  7. Bilder, D., Schober, M. & Perrimon, N. Integrated activity of PDZ protein complexes regulates epithelial polarity. Nature Cell Biol. 5, 53–58 (2003)

    Article  CAS  Google Scholar 

  8. Lee, J. D., Silva-Gagliardi, N. F., Tepass, U., McGlade, C. J. & Anderson, K. V. The FERM protein Epb4.1l5 is required for organization of the neural plate and for the epithelial–mesenchymal transition at the primitive streak of the mouse embryo. Development 134, 2007–2016 (2007)

    Article  CAS  Google Scholar 

  9. Gosens, I. et al. FERM protein EPB41L5 is a novel member of the mammalian CRB–MPP5 polarity complex. Exp. Cell Res. 313, 3959–3970 (2007)

    Article  CAS  Google Scholar 

  10. Hirano, M., Hashimoto, S., Yonemura, S., Sabe, H. & Aizawa, S. EPB41L5 functions to post-transcriptionally regulate cadherin and integrin during epithelial–mesenchymal transition. J. Cell Biol. 182, 1217–1230 (2008)

    Article  CAS  Google Scholar 

  11. Hsu, Y. C., Willoughby, J. J., Christensen, A. K. & Jensen, A. M. Mosaic Eyes is a novel component of the Crumbs complex and negatively regulates photoreceptor apical size. Development 133, 4849–4859 (2006)

    Article  CAS  Google Scholar 

  12. Wodarz, A., Hinz, U., Engelbert, M. & Knust, E. Expression of crumbs confers apical character on plasma membrane domains of ectodermal epithelia of Drosophila . Cell 82, 67–76 (1995)

    Article  CAS  Google Scholar 

  13. Tepass, U., Tanentzapf, G., Ward, R. & Fehon, R. Epithelial cell polarity and cell junctions in Drosophila . Annu. Rev. Genet. 35, 747–784 (2001)

    Article  CAS  Google Scholar 

  14. Pellikka, M. et al. Crumbs, the Drosophila homologue of human CRB1/RP12, is essential for photoreceptor morphogenesis. Nature 416, 143–149 (2002)

    Article  ADS  CAS  Google Scholar 

  15. Wu, V. M. & Beitel, G. J. A junctional problem of apical proportions: epithelial tube-size control by septate junctions in the Drosophila tracheal system. Curr. Opin. Cell Biol. 16, 493–499 (2004)

    Article  CAS  Google Scholar 

  16. Tepass, U. & Hartenstein, V. The development of cellular junctions in the Drosophila embryo. Dev. Biol. 161, 563–596 (1994)

    Article  CAS  Google Scholar 

  17. Genova, J. L. & Fehon, R. G. Neuroglian, Gliotactin, and the Na+/K+ ATPase are essential for septate junction function in Drosophila . J. Cell Biol. 161, 979–989 (2003)

    Article  CAS  Google Scholar 

  18. Lamb, R. S., Ward, R. E., Schweizer, L. & Fehon, R. G. Drosophila coracle, a member of the protein 4.1 superfamily, has essential structural functions in the septate junctions and developmental functions in embryonic and adult epithelial cells. Mol. Biol. Cell 9, 3505–3519 (1998)

    Article  CAS  Google Scholar 

  19. Bilder, D., Li, M. & Perrimon, N. Cooperative regulation of cell polarity and growth by Drosophila tumor suppressors. Science 289, 113–116 (2000)

    Article  ADS  CAS  Google Scholar 

  20. Wu, V. M. et al. Drosophila Varicose, a member of a new subgroup of basolateral MAGUKs, is required for septate junctions and tracheal morphogenesis. Development 134, 999–1009 (2007)

    Article  CAS  Google Scholar 

  21. Benton, R. & St Johnston, D. Drosophila PAR-1 and 14–3-3 inhibit Bazooka/PAR-3 to establish complementary cortical domains in polarized cells. Cell 115, 691–704 (2003)

    Article  CAS  Google Scholar 

  22. Yamanaka, T. et al. Mammalian Lgl forms a protein complex with PAR-6 and aPKC independently of PAR-3 to regulate epithelial cell polarity. Curr. Biol. 13, 734–743 (2003)

    Article  CAS  Google Scholar 

  23. Suzuki, A. et al. aPKC acts upstream of PAR-1b in both the establishment and maintenance of mammalian epithelial polarity. Curr. Biol. 14, 1425–1435 (2004)

    Article  CAS  Google Scholar 

  24. Harris, T. J. & Peifer, M. Adherens junction-dependent and -independent steps in the establishment of epithelial cell polarity in Drosophila . J. Cell Biol. 167, 135–147 (2004)

    Article  CAS  Google Scholar 

  25. Mavrakis, M., Rikhy, R. & Lippincott-Schwartz, J. Plasma membrane polarity and compartmentalization are established before cellularization in the fly embryo. Dev. Cell 16, 93–104 (2009)

    Article  CAS  Google Scholar 

  26. Jensen, A. M. & Westerfield, M. Zebrafish mosaic eyes is a novel FERM protein required for retinal lamination and retinal pigmented epithelial tight junction formation. Curr. Biol. 14, 711–717 (2004)

    Article  CAS  Google Scholar 

  27. Gassama-Diagne, A. et al. Phosphatidylinositol-3,4,5-trisphosphate regulates the formation of the basolateral plasma membrane in epithelial cells. Nature Cell Biol. 8, 963–970 (2006)

    Article  CAS  Google Scholar 

  28. Kizhatil, K. et al. Ankyrin-G and 2-spectrin collaborate in biogenesis of lateral membrane of human bronchial epithelial cells. J. Biol. Chem. 282, 2029–2037 (2007)

    Article  CAS  Google Scholar 

  29. Hortsch, M. & Margolis, B. Septate and paranodal junctions: kissing cousins. Trends Cell Biol. 13, 557–561 (2003)

    Article  CAS  Google Scholar 

  30. Bennett, V. & Healy, J. Organizing the fluid membrane bilayer: diseases linked to spectrin and ankyrin. Trends Mol. Med. 14, 28–36 (2008)

    Article  CAS  Google Scholar 

  31. Hoover, K. B. & Bryant, P. J. Drosophila Yurt is a new protein-4.1-like protein required for epithelial morphogenesis. Dev. Genes Evol. 212, 230–238 (2002)

    Article  CAS  Google Scholar 

  32. Tepass, U., Theres, C. & Knust, E. Crumbs encodes an EGF-like protein expressed on apical membranes of Drosophila epithelial cells and required for organization of epithelia. Cell 61, 787–799 (1990)

    Article  CAS  Google Scholar 

  33. Palladino, M. J., Bower, J. E., Kreber, R. & Ganetzky, B. Neural dysfunction and neurodegeneration in Drosophila Na+/K+ ATPase alpha subunit mutants. J. Neurosci. 23, 1276–1286 (2003)

    Article  CAS  Google Scholar 

  34. Bieber, A. J. et al. Drosophila neuroglian: a member of the immunoglobulin superfamily with extensive homology to the vertebrate neural adhesion molecule L1. Cell 59, 447–460 (1989)

    Article  CAS  Google Scholar 

  35. Auld, V. J., Fetter, R. D., Broadie, K. & Goodman, C. S. Gliotactin, a novel transmembrane protein on peripheral glia, is required to form the blood-nerve barrier in Drosophila . Cell 81, 757–767 (1995)

    Article  CAS  Google Scholar 

  36. Grenningloh, G., Rehm, E. J. & Goodman, C. S. Genetic analysis of growth cone guidance in drosophila: Fasciclin II functions as a neuronal recognition molecule. Cell 67, 45–57 (1991)

    Article  CAS  Google Scholar 

  37. Whitlock, K. Development of Drosophila wing sensory neurons in mutants with missing or modified cell surface molecules. Development 117, 1251–1260 (1993)

    CAS  PubMed  Google Scholar 

  38. Beitel, G. J. & Krasnow, M. A. Genetic control of epithelial tube size in the Drosophila tracheal system. Development 127, 3271–3282 (2000)

    CAS  PubMed  Google Scholar 

  39. Faivre-Sarrailh, C. et al. Drosophila contactin, a homolog of vertebrate contactin, is required for septate junction organization and paracellular barrier function. Development 131, 4931–4942 (2004)

    Article  CAS  Google Scholar 

  40. Llimargas, M., Strigini, M., Katidou, M., Karagogeos, D. & Casanova, J. Lachesin is a component of a septate junction-based mechanism that controls tube size and epithelial integrity in the Drosophila tracheal system. Development 131, 181–190 (2004)

    Article  CAS  Google Scholar 

  41. Chou, T. B. & Perrimon, N. The autosomal Flp–Dfs technique for generating germline mosaics in Drosophila melanogaster . Genetics 144, 1673–1679 (1996)

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Tepass, U. Crumbs, a component of the apical membrane, is required for zonula adherens formation in primary epithelia of Drosophila . Dev. Biol. 177, 217–225 (1996)

    Article  CAS  Google Scholar 

  43. Paul, S. M., Palladino, M. J. & Beitel, G. J. A pump-independent function of the Na,K-ATPase is required for epithelial junction function and tracheal tube-size control. Development 134, 147–155 (2007)

    Article  CAS  Google Scholar 

  44. Groth, A. C., Fish, M., Nusse, R. & Calos, M. P. Construction of transgenic Drosophila by using the site-specific integrase from phage C31. Genetics 166, 1775–1782 (2004)

    Article  CAS  Google Scholar 

  45. Laprise, P. et al. Phosphatidylinositol 3-kinase controls human intestinal epithelial cell differentiation by promoting adherens junction assembly and p38 MAPK activation. J. Biol. Chem. 277, 8226–8234 (2002)

    Article  CAS  Google Scholar 

  46. Hortsch, M., Wang, Y. M., Marikar, Y. & Bieber, A. J. The cytoplasmic domain of the Drosophila cell adhesion molecule neuroglian is not essential for its homophilic adhesive properties in S2 cells. J. Biol. Chem. 270, 18809–18817 (1995)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank V. Auld, J. Casanova, H. Bellen, M. Hortsch, R. Fehon, M. Bhat, R. Schuh, the Developmental Studies Hybridoma Bank and the Bloomington Drosophila Stock Center for reagents. We thank D. Godt, R. Winklbauer and T. Harris for critical comments on the manuscript, and H. Hong, M. Pellikka and W. Russin for technical assistance. This work was supported by postdoctoral fellowships from the CIHR (to P.L.), a predoctoral fellowship from the Vision Science Research Program, University of Toronto (to S.B.) and by NIH Lung Biology Training Grant 5 (to S.M.P.). Operating support was provided by the CIHR (to U.T. and P.L.), the Foundation Fighting Blindness Canada (to C.J.M.) and the NIH (to G.J.B.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich Tepass.

Supplementary information

Supplementary Figures

This file contains Supplementary Figures 1-8 with Legends. (PDF 4690 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laprise, P., Lau, K., Harris, K. et al. Yurt, Coracle, Neurexin IV and the Na+,K+-ATPase form a novel group of epithelial polarity proteins. Nature 459, 1141–1145 (2009). https://doi.org/10.1038/nature08067

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature08067

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing