Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Subcellular homeostasis of phytohormone auxin is mediated by the ER-localized PIN5 transporter

Abstract

The plant signalling molecule auxin provides positional information in a variety of developmental processes by means of its differential distribution (gradients) within plant tissues1. Thus, cellular auxin levels often determine the developmental output of auxin signalling. Conceptually, transmembrane transport and metabolic processes regulate the steady-state levels of auxin in any given cell2,3. In particular, PIN auxin-efflux-carrier-mediated, directional transport between cells is crucial for generating auxin gradients2,4,5. Here we show that Arabidopsis thaliana PIN5, an atypical member of the PIN gene family, encodes a functional auxin transporter that is required for auxin-mediated development. PIN5 does not have a direct role in cell-to-cell transport but regulates intracellular auxin homeostasis and metabolism. PIN5 localizes, unlike other characterized plasma membrane PIN proteins, to endoplasmic reticulum (ER), presumably mediating auxin flow from the cytosol to the lumen of the ER. The ER localization of other PIN5-like transporters (including the moss PIN) indicates that the diversification of PIN protein functions in mediating auxin homeostasis at the ER, and cell-to-cell auxin transport at the plasma membrane, represent an ancient event during the evolution of land plants.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: PIN5 auxin transporter.
Figure 2: Phenotypes of pin5 knockout and gain-of-function mutants.
Figure 3: PIN5 in regulation of auxin homeostasis.
Figure 4: PIN5 localization at the ER.

Similar content being viewed by others

References

  1. Vanneste, S. & Friml, J. Auxin: trigger of change in plant development. Cell 136, 1005–1016 (2009)

    Article  CAS  Google Scholar 

  2. Vieten, A., Sauer, M., Brewer, P. B. & Friml, J. Molecular and cellular aspects of auxin-transport-mediated development. Trends Plant Sci. 12, 160–168 (2007)

    Article  CAS  Google Scholar 

  3. Woodward, A. W. & Bartel, B. Auxin: regulation, action, and interaction. Ann. Bot. (Lond.) 95, 707–735 (2005)

    Article  CAS  Google Scholar 

  4. Kramer, E. M. & Bennett, M. J. Auxin transport: a field in flux. Trends Plant Sci. 11, 382–386 (2006)

    Article  CAS  Google Scholar 

  5. Bandyopadhyay, A. et al. Interactions of PIN and PGP auxin transport mechanisms. Biochem. Soc. Trans. 35, 137–141 (2007)

    Article  CAS  Google Scholar 

  6. Petrášek, J. et al. PIN proteins perform a rate-limiting function in cellular auxin efflux. Science 312, 914–918 (2006)

    Article  ADS  Google Scholar 

  7. Wiśniewska, J. et al. Polar PIN localization directs auxin flow in plants. Science 312, 883 (2006)

    Article  Google Scholar 

  8. Friml, J. et al. Efflux-dependent auxin gradients establish the apical-basal axis of Arabidopsis . Nature 426, 147–153 (2003)

    Article  ADS  CAS  Google Scholar 

  9. Benková, E. et al. Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell 115, 591–602 (2003)

    Article  Google Scholar 

  10. Reinhardt, D. et al. Regulation of phyllotaxis by polar auxin transport. Nature 426, 255–260 (2003)

    Article  ADS  CAS  Google Scholar 

  11. Friml, J. et al. AtPIN4 mediates sink driven auxin gradients and root patterning in Arabidopsis . Cell 108, 661–673 (2002)

    Article  CAS  Google Scholar 

  12. Blilou, I. et al. The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots. Nature 433, 39–44 (2005)

    Article  ADS  CAS  Google Scholar 

  13. Scarpella, E., Marcos, D., Friml, J. & Berleth, T. Control of leaf vascular patterning by polar auxin transport. Genes Dev. 20, 1015–1027 (2006)

    Article  CAS  Google Scholar 

  14. Xu, J. et al. A molecular framework for plant regeneration. Science 311, 385–388 (2006)

    Article  ADS  CAS  Google Scholar 

  15. Sauer, M. et al. Canalization of auxin flow by Aux/IAA-ARF-dependent feedback regulation of PIN polarity. Genes Dev. 20, 2902–2911 (2006)

    Article  CAS  Google Scholar 

  16. Luschnig, C., Gaxiola, R. A., Grisafi, P. & Fink, G. R. EIR1, a root-specific protein involved in auxin transport, is required for gravitropism in Arabidopsis thaliana . Genes Dev. 12, 2175–2187 (1998)

    Article  CAS  Google Scholar 

  17. Friml, J., Wiśniewska, J., Benková, E., Mendgen, K. & Palme, K. Lateral relocation of auxin efflux regulator PIN3 mediates tropism in Arabidopsis . Nature 415, 806–809 (2002)

    Article  ADS  Google Scholar 

  18. Vieten, A. et al. Functional redundancy of PIN proteins is accompanied by auxin-dependent cross-regulation of PIN expression. Development 132, 4521–4531 (2005)

    Article  CAS  Google Scholar 

  19. Zhao, Y. et al. A role for flavin monooxygenase-like enzymes in auxin biosynthesis. Science 291, 306–309 (2001)

    Article  ADS  CAS  Google Scholar 

  20. Geldner, N., Friml, J., Stierhof, Y.-D., Jürgens, G. & Palme, K. Auxin transport inhibitors block PIN1 cycling and vesicle trafficking. Nature 413, 425–428 (2001)

    Article  ADS  CAS  Google Scholar 

  21. Kleine-Vehn, J. et al. ARF GEF-dependent transcytosis mechanism for polar delivery of PIN auxin carriers in Arabidopsis . Curr. Biol. 18, 526–531 (2008)

    Article  CAS  Google Scholar 

  22. Bartel, B. & Fink, G. R. ILR1, an amidohydrolase that releases active indole-3-acetic acid from conjugates. Science 268, 1745–1748 (1995)

    Article  ADS  CAS  Google Scholar 

  23. Maeshima, M. & Ishikawa, F. ER membrane aquaporins in plants. Pflugers Arch. 456, 709–716 (2008)

    Article  CAS  Google Scholar 

  24. Ohno, H. et al. Interaction of tyrosine-based sorting signals with clathrin-associated proteins. Science 269, 1872–1875 (1995)

    Article  ADS  CAS  Google Scholar 

  25. Rensing, S. A. et al. The Physcomitrella genome reveals evolutionary insights into the conquest of land by plants. Science 319, 64–69 (2008)

    Article  ADS  CAS  Google Scholar 

  26. Kepinski, S. & Leyser, O. The Arabidopsis F-box protein TIR1 is an auxin receptor. Nature 435, 446–451 (2005)

    Article  ADS  CAS  Google Scholar 

  27. Dharmasiri, N., Dharmasiri, S. & Estelle, M. The F-box protein TIR1 is an auxin receptor. Nature 435, 441–445 (2005)

    Article  ADS  CAS  Google Scholar 

  28. Jones, A. M. & Herman, E. M. KDEL-containing auxin-binding protein is secreted to the plasma membrane and cell wall. Plant Physiol. 101, 595–606 (1993)

    Article  CAS  Google Scholar 

  29. Chen, J., Ullah, H., Young, J. C., Sussman, M. R. & Jones, A. M. ABP1 is required for organized cell elongation and division in Arabidopsis embryogenesis. Genes Dev. 15, 902–911 (2001)

    Article  CAS  Google Scholar 

  30. Fujita, T. et al. Convergent evolution of shoots in land plants: lack of auxin polar transport in moss shoots. Evol. Dev. 10, 176–186 (2008)

    Article  CAS  Google Scholar 

  31. Hellens, R. P. et al. pGreen: a versatile and flexible binary Ti vector for Agrobacterium-mediated plant transformation. Plant Mol. Biol. 42, 819–832 (2000)

    Article  CAS  Google Scholar 

  32. Karimi, M., Inze, D. & Depicker, A. Gateway vectors for Agrobacterium-mediated plant transformation. Trends Plant Sci. 7, 193–195 (2002)

    Article  CAS  Google Scholar 

  33. Aoyama, T. & Chua, N.-H. A glucocorticoid-mediated transcriptional induction system in transgenic plants. Plant J. 11, 605–612 (1997)

    Article  CAS  Google Scholar 

  34. Weijers, D., Van Hamburg, J. P., Van Rijn, E., Hooykaas, P. J. & Offringa, R. Diphtheria toxin-mediated cell ablation reveals interregional communication during Arabidopsis seed development. Plant Physiol. 133, 1882–1892 (2003)

    Article  CAS  Google Scholar 

  35. Bouchard, R. et al. Immunophilin-like TWISTED DWARF1 modulates auxin efflux activities of Arabidopsis P-glycoproteins. J. Biol. Chem. 281, 30603–30612 (2006)

    Article  CAS  Google Scholar 

  36. Nagata, T., Nemoto, Y. & Hasezawa, S. Tobacco BY-2 cell line as the “HeLa” cell in the cell biology of higher plants. Int. Rev. Cytol. 132, 1–30 (1992)

    Article  CAS  Google Scholar 

  37. Dobrev, P. & Kamínek, M. Fast and efficient separation of cytokinins from auxin and abscisic acid and their purification using mixed-mode solid-phase extraction. J. Chromatogr. A. 950, 21–29 (2002)

    Article  Google Scholar 

  38. Tommasini, R. et al. The human multidrug resistance-associated protein functionally complements the yeast cadmium resistance factor 1. Proc. Natl Acad. Sci. USA 93, 6743–6748 (1996)

    Article  ADS  CAS  Google Scholar 

  39. Geisler, M. et al. TWISTED DWARF1, a unique plasma membrane-anchored immunophilin-like protein, interacts with Arabidopsis multidrug resistance-like transporters AtPGP1 and AtPGP19. Mol. Biol. Cell 14, 4238–4249 (2003)

    Article  CAS  Google Scholar 

  40. Hejátko, J. et al. In situ hybridisation technique for mRNA detection in whole mount Arabidopsis samples. Nature Protocols 1, 1462–1467 (2006)

    Article  Google Scholar 

  41. Sauer, M., Paciorek, T., Benková, E. & Friml, J. Immunocytochemical techniques for whole-mount in situ protein localization in plants. Nature Protocols 1, 98–103 (2006)

    Article  CAS  Google Scholar 

  42. Bar-Peled, M. & Raikhel, N. V. Characterization of AtSEC12 and AtSAR1. Proteins likely involved in endoplasmic reticulum and Golgi transport. Plant Physiol. 114, 315–324 (1997)

    Article  CAS  Google Scholar 

  43. Li, Q. et al. A syntaxin 1, Gαo, and N-type calcium channel complex at a presynaptic nerve terminal: analysis by quantitative immunocolocalization. J. Neurosci. 24, 4070–4081 (2004)

    Article  CAS  Google Scholar 

  44. Manders, E. E. M., Verbeek, F. J. & Aten, J. A. Measurement of co-localisation of objects in dualcolour confocal images. J. Microsc. 169, 375–382 (1993)

    Article  Google Scholar 

  45. Katoh, K., Misawa, K., Kuma, K. & Miyata, T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 30, 3059–3066 (2002)

    Article  CAS  Google Scholar 

  46. Ronquist, F. & Huelsenbeck, J. P. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574 (2003)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. G. Robinson, J. Clarke and NASC for providing material; B. Scheres and H. Höfte for sharing unpublished data, E. Bellinvia, M. Pařezová, B. Pešek and V. Vincenzetti for technical help and M. De Cock for critical reading and help with preparing the manuscript. This work was supported by the Volkswagenstiftung (J.F., J.M., V.G.), the Odysseus programme of the FWO (J.M., J.Z.), GA ASCR IAA601630703 (J.F.) and KJB600380604 (J.P., K.S.), the Ministry of Education, Youth and Sports of the Czech Republic, project number LC06034 (E.Z., P.S., P.K., K.H., J.P., D.S.) and MSM6198959216 (J.R.), a European Research Council starting independent research grant to E.B. (A.Bi.), the Novartis Foundation (M.G.), the Swiss National Funds (M.G.), the Forschungskredit of the University of Zurich (A.Ba.) and the Austrian Science Fund (C.L).

Author Contributions J.F. and J.M. designed the research. J.M. cloned the constructs, established the mutants and performed the expression and localization analyses, P.S. designed and performed metabolic profiling, and established transgenic tobacco lines, A.Ba. and M.G. performed the transport assays in yeast and protoplasts, K.H. performed the free IAA measurements, P.I.D. and J.R. ran HPLC and MS auxin analyses, J.P. and K.S. analysed localization of PINs in BY-2 tobacco cells, D.S. prepared PIN6-GFP construct, A.Bi. and E.B. performed the analysis of the lateral root phenotypes, J.Z. performed the site-directed mutagenesis, V.G. performed the phenotype analyses, Y.-D.S. performed the electron microscopy, C.L. originally identified the PIN5 gene, isolated the PIN5 cDNA and generated overexpression lines, J.F. performed the in situ hybridization, P.K. constructed the cladogram, and J.M., E.Z. and J.F. wrote the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiří Friml.

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1-10 with Legends and Supplementary References. (PDF 2566 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mravec, J., Skůpa, P., Bailly, A. et al. Subcellular homeostasis of phytohormone auxin is mediated by the ER-localized PIN5 transporter. Nature 459, 1136–1140 (2009). https://doi.org/10.1038/nature08066

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature08066

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing