Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A picogram- and nanometre-scale photonic-crystal optomechanical cavity

Abstract

The dynamic back-action caused by electromagnetic forces (radiation pressure) in optical1,2,3,4,5,6 and microwave7 cavities is of growing interest8. Back-action cooling, for example, is being pursued as a means of achieving the quantum ground state of macroscopic mechanical oscillators. Work in the optical domain has revolved around millimetre- or micrometre-scale structures using the radiation pressure force. By comparison, in microwave devices, low-loss superconducting structures have been used for gradient-force-mediated coupling to a nanomechanical oscillator of picogram mass7. Here we describe measurements of an optical system consisting of a pair of specially patterned nanoscale beams in which optical and mechanical energies are simultaneously localized to a cubic-micron-scale volume, and for which large per-photon optical gradient forces are realized. The resulting scale of the per-photon force and the mass of the structure enable the exploration of cavity optomechanical regimes in which, for example, the mechanical rigidity of the structure is dominantly provided by the internal light field itself. In addition to precision measurement and sensitive force detection9, nano-optomechanics may find application in reconfigurable and tunable photonic systems10, light-based radio-frequency communication11 and the generation of giant optical nonlinearities for wavelength conversion and optical buffering12.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Zipper cavity optomechanical system and experimental set-up.
Figure 2: Optical spectroscopy of the zipper cavity.
Figure 3: Mechanical motion transduction.
Figure 4: Optical spring and damping.

Similar content being viewed by others

References

  1. Arcizet, O., Cohadon, P.-F., Briant, T., Pinard, M. & Heidmann, A. Radiation-pressure cooling and optomechanical instability of a micromirror. Nature 444, 71–73 (2006)

    Article  ADS  CAS  Google Scholar 

  2. Gigan, S. et al. Self-cooling of a micromirror by radiation pressure. Nature 444, 67–70 (2006)

    Article  ADS  CAS  Google Scholar 

  3. Schliesser, A., Del’Haye, P., Nooshi, N., Vahala, K. J. & Kippenberg, T. J. Radiation pressure cooling of a micromechanical oscillator using dynamical backaction. Phys. Rev. Lett. 97, 243905 (2006)

    Article  ADS  CAS  Google Scholar 

  4. Corbitt, T. et al. Optical dilution and feedback cooling of a gram-scale oscillator to 6.9 mK. Phys. Rev. Lett. 99, 160801 (2007)

    Article  ADS  Google Scholar 

  5. Thompson, J. D. et al. Strong dispersive coupling of a high-finesse cavity to micromechanical membrane. Nature 452, 72–75 (2008)

    Article  ADS  CAS  Google Scholar 

  6. Kippenberg, T. J., Rokhsari, H., Carmon, T., Scherer, A. & Vahala, K. J. Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity. Phys. Rev. Lett. 95, 033901 (2005)

    Article  ADS  CAS  Google Scholar 

  7. Regal, C. A., Tuefel, J. D. & Lehnert, K. W. Measuring nanomechanical motion with a microwave cavity interferometer. Nature Phys. 4, 555–560 (2008)

    Article  CAS  Google Scholar 

  8. Kippenberg, T. J. & Vahala, K. J. Cavity optomechanics: back-action at the mesoscale. Science 321, 1172–1176 (2008)

    Article  ADS  CAS  Google Scholar 

  9. Stowe, T. D. et al. Attonewton force detection using ultrathin silicon cantilevers. Appl. Phys. Lett. 71, 288–290 (1997)

    Article  ADS  CAS  Google Scholar 

  10. Rakich, P. T., Popovic, M. A., Soljacic, M. & Ippen, E. P. Trapping, coralling and spectral bonding of optical resonances through optically induced potentials. Nature Photon. 1, 658–665 (2007)

    Article  ADS  CAS  Google Scholar 

  11. Hossein-Zadeh, M. & Vahala, K. J. Photonic RF down-converter based on optomechanical oscillation. IEEE Photon. Technol. Lett. 20, 234–236 (2008)

    Article  ADS  Google Scholar 

  12. Notomi, M., Taniyama, H., Mitsugi, S. & Kuramochi, E. Optomechanical wavelength and energy conversion in high-Q double-layer cavities of photonic crystal slabs. Phys. Rev. Lett. 97, 023903 (2006)

    Article  ADS  Google Scholar 

  13. Povinelli, M. L. et al. Evanescent-wave bonding between optical waveguides. Opt. Lett. 30, 3042–3044 (2005)

    Article  ADS  Google Scholar 

  14. Eichenfield, M., Michael, C. P., Perahia, R. & Painter, O. Actuation of micro-optomechanical systems via cavity-enhanced optical dipole forces. Nature Photon. 1, 416–422 (2007)

    Article  ADS  CAS  Google Scholar 

  15. Li, M. et al. Harnessing optical forces in integrated photonic circuits. Nature 456, 480–484 (2008)

    Article  ADS  CAS  Google Scholar 

  16. Ashkin, A. History of optical trapping and manipulation of small-neutral particle, atoms, and molecules. IEEE J. Quantum Electron. 6, 841–856 (2000)

    Article  CAS  Google Scholar 

  17. Kippenberg, T. J. & Vahala, K. Cavity optomechanics. Opt. Express 15, 17172–17205 (2007)

    Article  ADS  Google Scholar 

  18. Srinivasan, K., Barclay, P. E., Borselli, M. & Painter, O. An optical fiber-based probe for photonic crystal microcavities. IEEE J. Sel. Areas Comm. 23, 1321–1329 (2005)

    Article  Google Scholar 

  19. Chan, J., Eichenfield, M., Camacho, R. & Painter, O. Optical and mechanical design of a “zipper” photonic crystal optomechanical cavity. Opt. Express 17, 3802–3817 (2009)

    Article  ADS  CAS  Google Scholar 

  20. Song, B.-S., Noda, S., Asano, T. & Akahane, Y. Ultra-high-Q photonic double-heterostructure nanocavity. Nature Mater. 4, 207–210 (2005)

    Article  ADS  CAS  Google Scholar 

  21. McCutcheon, M. W. & Loncar, M. Design of a silicon nitride photonic crystal nanocavity with a quality factor of one million for coupling to a diamond nanocrystal. Opt. Express 16, 19136–19145 (2008)

    Article  ADS  CAS  Google Scholar 

  22. Verbridge, S. S., Parpia, J. M., Reichenbach, R. B., Bellan, L. M. & Craighead, H. G. High quality factor resonance at room temperature with nanostrings under high tensile stress. J. Appl. Phys. 99, 124304 (2006)

    Article  ADS  Google Scholar 

  23. Verbridge, S. S., Illic, R., Craighead, H. G. & Parpia, J. M. Size and frequency dependent gas damping of nanomechanical resonators. Appl. Phys. Lett. 93, 013101 (2008)

    Article  ADS  Google Scholar 

  24. Tittonen, I. et al. Interferometric measurements of the position of a macroscopic body: towards observation of quantum limits. Phys. Rev. A 59, 1038–1044 (1999)

    Article  ADS  CAS  Google Scholar 

  25. Höhberger, C. & Karrai, K. Cavity cooling of a microlever. Nature 432, 1002–1005 (2004)

    Article  ADS  Google Scholar 

  26. Ilic, B., Krylov, S., Aubin, K., Reichenbach, R. & Craighead, H. G. Optical excitation of nanoelectromechanical oscillators. Appl. Phys. Lett. 86, 193114 (2005)

    Article  ADS  Google Scholar 

  27. Takahashi, Y. et al. High-Q nanocavity with a 2-ns photon lifetime. Opt. Express 15, 17206–17213 (2007)

    Article  ADS  Google Scholar 

  28. Schliesser, A., Riviere, R., Anetsberger, G., Arcizet, O. & Kippenberg, T. J. Resolved-sideband cooling of a micromechanical oscillator. Nature Phys. 4, 415–419 (2008)

    Article  ADS  CAS  Google Scholar 

  29. Marquardt, F., Harris, J. G. E. & Girvin, S. M. Dynamical multistability induced by radiation pressure in high-finesse micromechanical optical cavities. Phys. Rev. Lett. 96, 103901 (2006)

    Article  ADS  Google Scholar 

  30. Olson, R. H. & El-Kady, I. Microfabricated phononic crystal devices and applications. Meas. Sci. Technol. 20, 012002 (2008)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Q. Lin for extensive discussions regarding this work, and for pointing out the origin of the mechanical resonance interference. Funding for this work was provided by a US Defense Advanced Research Projects Agency seedling effort managed by H. Temkin, and through an Emerging Models and Technologies grant from the US National Science Foundation.

Author Contributions M.E. and R.C. performed the majority of the fabrication and testing of devices and J.C. performed the optical and mechanical simulations. O.P., along with M.E. and K.J.V., developed the device concept. O.P., K.J.V., M.E. and R.C. all contributed to planning the measurements. All authors worked together to write the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oskar Painter.

Supplementary information

Supplementary Information

This file contains Supplementary Data, Supplementary Methods, Supplementary Figures S-1-S-3 with Legends and Supplementary References. (PDF 558 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eichenfield, M., Camacho, R., Chan, J. et al. A picogram- and nanometre-scale photonic-crystal optomechanical cavity. Nature 459, 550–555 (2009). https://doi.org/10.1038/nature08061

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature08061

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing