Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Viruses manipulate the marine environment

Abstract

Marine viruses affect Bacteria, Archaea and eukaryotic organisms and are major components of the marine food web. Most studies have focused on their role as predators and parasites, but many of the interactions between marine viruses and their hosts are much more complicated. A series of recent studies has shown that viruses have the ability to manipulate the life histories and evolution of their hosts in remarkable ways, challenging our understanding of this almost invisible world.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Effects of marine viruses on their hosts.
Figure 2: Library of recently discovered marine viruses.
Figure 3: Viruses that alter the life cycle of solar-powered slugs.

References

  1. Suttle, C. A. Marine viruses — major players in the global ecosystem. Nature Rev. Microbiol. 5, 801–812 (2007).

    Article  CAS  Google Scholar 

  2. Brussaard, C. P. D. et al. Global-scale processes with a nanoscale drive: the role of marine viruses. ISME J. 2, 575–578 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. Steward, G. F., Montiel, J. L. & Azam, F. Genome size distributions indicate variability and similarities among marine viral assemblages from diverse environments. Limnol. Oceanogr. 45, 1697–1706 (2000).

    Article  ADS  Google Scholar 

  4. Wommack, K. E., Ravel, J., Hill, R. T., Chun, J. S. & Colwell, R. R. Population dynamics of Chesapeake bay virioplankton: total-community analysis by pulsed-field gel electrophoresis. Appl. Environ. Microbiol. 65, 231–240 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Breitbart, M. et al. Genomic analysis of uncultured marine viral communities. Proc. Natl Acad. Sci. USA 99, 14250–14255 (2002).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  6. Breitbart, M. et al. Diversity and population structure of a near-shore marine-sediment viral community. Proc. R. Soc. Lond. B 271, 565–574 (2004).

    Article  Google Scholar 

  7. Angly, F. E. et al. The marine viromes of four oceanic regions. PLoS Biol. 4, e368 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Desnues, C. et al. Biodiversity and biogeography of phages in modern stromatolites and thrombolites. Nature 452, 340–345 (2008).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Dinsdale, E. A. et al. Functional metagenomic profiling of nine biomes. Nature 452, 629–632 (2008). This paper demonstrates that viromes contain many unexpected host genes.

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Monier, A., Claverie, J.-M. & Ogata, H. Horizontal gene transfer and nucleotide compositional anomaly in large DNA viruses. BMC Genomics 8, 456 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Paul, J. H. Prophages in marine bacteria: dangerous molecular time bombs or the key to survival in the seas? ISME J. 2, 579–589 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. Partensky, F., Hess, W. R. & Vaulot, D. Prochlorococcus, a marine photosynthetic prokaryote of global significance. Microbiol. Mol. Biol. Rev. 63, 106–127 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Mann, N. H. et al. The genome of S-PM2, a 'photosynthetic' T4-type bacteriophage that infects marine Synechococcus strains. J. Bacteriol. 187, 3188–3200 (2005). This paper shows that cyanophage genomes carry genes involved in photosynthesis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sullivan, M. B. et al. Prevalence and evolution of core photosystem II genes in marine cyanobacterial viruses and their hosts. PLoS Biol. 4, e234 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Lindell, D., Jaffe, J. D., Johnson, Z. I., Church, G. M. & Chisholm, S. W. Photosynthesis genes in marine viruses yield proteins during host infection. Nature 438, 86–89 (2005).

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Moore, L. R., Rocap, G. & Chisholm, S. W. Physiology and molecular phylogeny of coexisting Prochlorococcus ecotypes. Nature 393, 464–467 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Sullivan, M. B., Coleman, M. L., Weigele, P., Rohwer, F. & Chisholm, S. W. Three Prochlorococcus cyanophage genomes: signature features and ecological interpretations. PLoS Biol. 3, e144 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Coleman, M. L. et al. Genomic islands and the ecology and evolution of Prochlorococcus . Science 311, 1768–1770 (2006).

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Sharon, I. et al. Viral photosynthetic reaction center genes and transcripts in the marine environment. ISME J. 1, 492–501 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Waldor, M. K. & Mekalanos, J. J. Lysogenic conversion by a filamentous phage encoding cholera toxin. Science 272, 1910–1914 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Williamson, S. J. et al. Lysogenic virus–host interactions predominate at deep-sea diffuse-flow hydrothermal vents. ISME J. 2, 1112–1121 (2008).

    Article  CAS  PubMed  Google Scholar 

  22. Jiang, S. C. & Paul, J. H. Gene transfer by transduction in the marine environment. Appl. Environ. Microbiol. 64, 2780–2787 (1998). This pioneering study was the first to measure transduction rates in the marine environment.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Stanton, T. B. Prophage-like gene transfer agents — novel mechanisms of gene exchange for Methanococcus, Desulfovibrio, Brachyspira, and Rhodobacter species. Anaerobe 13, 43–49 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Lang, A. S. & Beatty, J. T. Importance of widespread gene transfer agent genes in α-proteobacteria. Trends Microbiol. 15, 54–62 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Biers, E. J. et al. Occurrence and expression of gene transfer agent genes in marine bacterioplankton. Appl. Environ. Microbiol. 74, 2933–2939 (2008). References 24 and 25 discuss the prevalence of GTAs and their role in horizontal gene transfer.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chiura, H. X. Generalized gene transfer by virus-like particles from marine bacteria. Aquat. Microb. Ecol. 13, 75–83 (1997).

    Article  Google Scholar 

  27. Chiura, H. X. Broad host range xenotrophic gene transfer by virus-like particles from a hot spring. Microbes Environ. 17, 53–58 (2001).

    Article  Google Scholar 

  28. Breitbart, M., Miyake, J. H. & Rohwer, F. Global distribution of nearly identical phage-encoded DNA sequences. FEMS Microbiol. Lett. 236, 249–256 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Short, C. M. & Suttle, C. A. Nearly identical bacteriophage structural gene sequences are widely distributed in both marine and freshwater environments. Appl. Environ. Microbiol. 71, 480–486 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sano, E., Carlson, S., Wegley, L. & Rohwer, F. Movement of viruses between biomes. Appl. Environ. Microbiol. 70, 5842–5846 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Visvesvara, G. S., Moura, H. & Schuster, F. L. Pathogenic and opportunistic free-living amoebae: Acanthamoeba spp., Balamuthia mandrillaris, Naegleria fowleri, and Sappinia diploidea . FEMS Immunol. Med. Microbiol. 50, 1–26 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. La Scola, B. et al. A giant virus in amoebae. Science 299, 2033 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Raoult, D. et al. The 1.2-megabase genome sequence of mimivirus. Science 306, 1344–1350 (2004).

    Article  ADS  CAS  PubMed  Google Scholar 

  34. Filee, J., Siguier, P. & Chandler, M. I am what I eat and I eat what I am: acquisition of bacterial genes by giant viruses. Trends Genet. 23, 10–15 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. La Scola, B. et al. The virophage as a unique parasite of the giant mimivirus. Nature 455, 100–104 (2008). A parasite of mimiviruses, Sputnik phage, was identified and its genome characterized in this paper.

    Article  ADS  CAS  PubMed  Google Scholar 

  36. Monier, A., Claverie, J.-M. & Ogata, H. Taxonomic distribution of large DNA viruses in the sea. Genome Biol. 9, R106 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Monier, A. et al. Marine mimivirus relatives are probably large algal viruses. Virol. J. 5, 12 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Paasche, E. A review of the coccolithophorid Emiliania huxleyi (Prymnesiophyceae), with particular reference to growth, coccolith formation, and calcification–photosynthesis interactions. Phycologia 40, 503–529 (2001).

    Article  Google Scholar 

  39. Bratbak, G., Egge, J. K. & Heldal, M. Viral mortality of the marine alga Emiliania huxleyi (Haptophyceae) and termination of algal blooms. Mar. Ecol. Prog. Ser. 93, 39–48 (1993).

    Article  Google Scholar 

  40. Wilson, W. H., Tarran, G. & Zubkov, M. V. Virus dynamics in a coccolithophore-dominated bloom in the North Sea. Deep-Sea Res. II 49, 2951–2963 (2002).

    Article  ADS  Google Scholar 

  41. Wilson, W. H. et al. Isolation of viruses responsible for the demise of an Emiliania huxleyi bloom in the English Channel. J. Mar. Biol. Assoc. UK 82, 369–377 (2002).

    Article  ADS  Google Scholar 

  42. Wilson, W. H. et al. Complete genome sequence and lytic phase transcription profile of a Coccolithovirus . Science 309, 1090–1092 (2005).

    Article  ADS  CAS  PubMed  Google Scholar 

  43. Bidle, K. D., Haramaty, L., Ramos, J. B. E. & Falkowski, P. Viral activation and recruitment of metacaspases in the unicellular coccolithophore, Emiliania huxleyi . Proc. Natl Acad. Sci. USA 104, 6049–6054 (2007).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  44. Best, S. M., Wolfinbarger, J. B. & Bloom, M. E. Caspase activation is required for permissive replication of Aleutian mink disease parvovirus in vitro . Virology 292, 224–234 (2002).

    Article  CAS  PubMed  Google Scholar 

  45. Best, S. M. & Bloom, M. E. Caspase activation during virus infection: more than just the kiss of death? Virology 320, 191–194 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Frada, M., Probert, I., Allen, M. J., Wilson, W. H. & de Vargas, C. The 'Cheshire Cat' escape strategy of the coccolithophore Emiliania huxleyi in response to viral infection. Proc. Natl Acad. Sci. USA 105, 15944–15949 (2008). This paper shows that the different life stages of E. huxleyi are a way of avoiding viral mortality.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  47. Klaveness, D. & Paasche, E. Two different Coccolithus huxleyi cell types incapable of coccolith formation. Arch. Microbiol. 75, 382–385 (1971).

    Google Scholar 

  48. Mujer, C. V., Andrews, D. L., Manhart, J. R., Pierce, S. K. & Rumpho, M. E. Chloroplast genes are expressed during intracellular symbiotic association of Vaucheria litorea plastids with the sea slug Elysia chlorotica . Proc. Natl Acad. Sci. USA 93, 12333–12338 (1996).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  49. Green, B. J. et al. Mollusc–algal chloroplast endosymbiosis. Photosynthesis, thylakoid protein maintenance, and chloroplast gene expression continue for many months in the absence of the algal nucleus. Plant Physiol. 124, 331–342 (2000).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  50. Pierce, S. K., Curtis, N. E., Hanten, J. J., Boerner, S. L. & Schwartz, J. A. Transfer, integration and expression of functional nuclear genes between multicellular species. Symbiosis 43, 57–64 (2007).

    CAS  Google Scholar 

  51. Pierce, S. K., Curtis, N. E., Schwartz, J. A. & Massey, S. E. Functional algal nuclear genes are present in a sea slug genome — horizontal gene transfer demonstrated. Integr. Comp. Biol. 46, e110 (2006).

    Google Scholar 

  52. Pierce, S. K., Massey, S. E., Hanten, J. J. & Curtis, N. E. Horizontal transfer of functional nuclear genes between multicellular organisms. Biol. Bull. 204, 237–240 (2003).

    Article  PubMed  Google Scholar 

  53. Pierce, S. K., Maugel, T. K., Rumpho, M. E., Hanten, J. J. & Mondy, W. L. Annual viral expression in a sea slug population: Life cycle control and symbiotic chloroplast maintenance. Biol. Bull. 197, 1–6 (1999). In this study, viruses are implicated as a route to the horizontal transfer of photosynthetic genes from chloroplasts to metazoan host genomes.

    Article  CAS  PubMed  Google Scholar 

  54. Mondy, W. L. & Pierce, S. K. Apoptotic-like morphology is associated with annual synchronized death in kleptoplastic sea slugs (Elysia chlorotica). Invertebr. Biol. 122, 126–137 (2003).

    Article  Google Scholar 

  55. Bordenstein, S. R., Marshall, M. L., Fry, A. J., Kim, U. & Wernegreen, J. J. The tripartite associations between bacteriophage, Wolbachia, and arthropods. PLoS Pathog. 2, e43 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Moran, N. A., Degnan, P. H., Santos, S. R., Dunbar, H. E. & Ochman, H. The players in a mutualistic symbiosis: insects, bacteria, viruses, and virulence genes. Proc. Natl Acad. Sci. USA 102, 16919–16926 (2005).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  57. Mannisto, R. H., Kivela, H. M., Paulin, L., Bamford, D. H. & Bamford, J. K. H. The complete genome sequence of PM2, the first lipid-containing bacterial virus to be isolated. Virology 262, 355–363 (1999).

    Article  CAS  PubMed  Google Scholar 

  58. Fuhrman, J. Genome sequences from the sea. Nature 424, 1001–1002 (2003).

    Article  ADS  CAS  PubMed  Google Scholar 

  59. Zobell, C. E. Marine Microbiology (Chronica Botanica, 1946).

    Google Scholar 

  60. Spencer, R. A marine bacteriophage. Nature 175, 690–691 (1955).

    Article  ADS  CAS  PubMed  Google Scholar 

  61. Pomeroy, L. R. The ocean's food web, a changing paradigm. Bioscience 24, 499–504 (1974).

    Article  Google Scholar 

  62. Torrella, F. & Morita, R. Y. Evidence by electron micrographs for a high incidence of bacteriophage particles in the waters of Yaquina Bay, Oregon: ecological and taxonomical implications. Appl. Environ. Microbiol. 37, 774–778 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Moebus, K. A method for the detection of bacteriophages from ocean water. Helgol. Meeresunters. 34, 1–14 (1980).

    Article  Google Scholar 

  64. Fuhrman, J. A. & Noble, R. T. Viruses and protists cause similar bacterial mortality in coastal seawater. Limnol. Oceanogr. 40, 1236–1242 (1995).

    Article  ADS  Google Scholar 

  65. Suttle, C. A. The significance of viruses to mortality in aquatic microbial communities. Microb. Ecol. 28, 237–243 (1994).

    Article  CAS  PubMed  Google Scholar 

  66. Gobler, C. J., Hutchins, D. A., Fisher, N. S., Cosper, E. M. & Sanudo-Wilhelmy, S. A. Release and bioavailability of C, N, P, Se, and Fe following viral lysis of a marine chrysophyte. Limnol. Oceanogr. 42, 1492–1504 (1997).

    Article  ADS  CAS  Google Scholar 

  67. Rohwer, F. et al. The complete genomic sequence of the marine phage Roseophage SIO1 shares homology with nonmarine phages. Limnol. Oceanogr. 45, 408–418 (2000).

    Article  ADS  CAS  Google Scholar 

  68. Culley, A. I., Lang, A. S. & Suttle, C. A. Metagenomic analysis of coastal RNA virus communities. Science 312, 1795–1798 (2006).

    Article  ADS  CAS  PubMed  Google Scholar 

  69. Culley, A. I., Lang, A. S. & Suttle, C. A. The complete genomes of three viruses assembled from shotgun libraries of marine RNA virus communities. Virol. J. 4, 69 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Comeau, A. M., Chan, A. M. & Suttle, C. A. Genetic richness of vibriophages isolated in a coastal environment. Environ. Microbiol. 8, 1164–1176 (2006).

    Article  CAS  PubMed  Google Scholar 

  71. Jiang, S. C. & Paul, J. H. Significance of lysogeny in the marine environment: studies with isolates and a model of lysogenic phage production. Microb. Ecol. 35, 235–243 (1998).

    Article  CAS  PubMed  Google Scholar 

  72. Paul, J. H. et al. Complete genome sequence of Φ HSIC, a pseudotemperate marine phage of Listonella pelagia . Appl. Environ. Microbiol. 71, 3311–3320 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Mann, N. H., Cook, A., Millard, A., Bailey, S. & Clokie, M. Marine ecosystems: bacterial photosynthesis genes in a virus. Nature 424, 741 (2003).

    Article  ADS  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Reprints and permissions information is available at http://www.nature.com/reprints.

Correspondence should be addressed to R.V.T. (rvegathurber@gmail.com).

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Rohwer, F., Thurber, R. Viruses manipulate the marine environment. Nature 459, 207–212 (2009). https://doi.org/10.1038/nature08060

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature08060

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing