Abstract
Numerically, microbial species dominate the oceans, yet their population dynamics, metabolic complexity and synergistic interactions remain largely uncharted. A full understanding of life in the ocean requires more than knowledge of marine microbial taxa and their genome sequences. The latest experimental techniques and analytical approaches can provide a fresh perspective on the biological interactions within marine ecosystems, aiding in the construction of predictive models that can interrelate microbial dynamics with the biogeochemical matter and energy fluxes that make up the ocean ecosystem.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Disentangling environmental effects in microbial association networks
Microbiome Open Access 26 November 2021
-
Accessing the genomic information of unculturable oceanic picoeukaryotes by combining multiple single cells
Scientific Reports Open Access 27 January 2017
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout




References
Pace, N. R. A molecular view of microbial diversity and the biosphere. Science 276, 734–740 (1997).
Staley, J. T. & Konopka, A. Measurement of in situ activities of nonphotosynthetic microorganisms in aquatic and terrestrial habitats. Annu. Rev. Microbiol. 39, 321–346 (1985).
Rappe, M. S. & Giovannoni, S. J. The uncultured microbial majority. Annu. Rev. Microbiol. 57, 369–394 (2003).
Giovannoni, S. & Stingl, U. The importance of culturing bacterioplankton in the 'omics' age. Nature Rev. Microbiol. 5, 820–826 (2007).
Stingl, U., Tripp, H. J. & Giovannoni, S. J. Improvements of high-throughput culturing yielded novel SAR11 strains and other abundant marine bacteria from the Oregon coast and the Bermuda Atlantic Time Series study site. ISME J. 1, 361–371 (2007).
Connon, S. A. & Giovannoni, S. J. High-throughput methods for culturing microorganisms in very-low-nutrient media yield diverse new marine isolates. Appl. Environ. Microbiol. 68, 3878–3885 (2002). This is the first report of a dilution-to-extinction cultivation approach that was successful in isolating a wide variety of the predominant marine bacterioplankton types.
Chisholm, S. W. et al. A novel free-living prochlorophyte occurs at high cell concentrations in the oceanic euphotic zone. Nature 334, 340–343 (1988).
Chisholm, S. W. et al. Prochlorococcus marinus nov. gen. nov. sp.: an oxyphototrophic marine prokaryote containing divinyl chlorophyll a and b . Arch. Microbiol. 157, 297–300 (1992).
Sullivan, M. B., Waterbury, J. B. & Chisholm, S. W. Cyanophages infecting the oceanic cyanobacterium Prochlorococcus . Nature 424, 1047–1051 (2003).
Lindell, D. et al. Genome-wide expression dynamics of a marine virus and host reveal features of co-evolution. Nature 449, 83–86 (2007).
Follows, M. J., Dutkiewicz, S., Grant, S. & Chisholm, S. W. Emergent biogeography of microbial communities in a model ocean. Science 315, 1843–1846 (2007).
Rappe, M. S., Connon, S. A., Vergin, K. L. & Giovannoni, S. J. Cultivation of the ubiquitous SAR11 marine bacterioplankton clade. Nature 418, 630–633 (2002). This paper reports the first isolation in pure culture of a strain from the SAR11 clade, a representative of one of the most abundant bacterial groups in marine plankton.
Giovannoni, S. J. et al. Proteorhodopsin in the ubiquitous marine bacterium SAR11. Nature 438, 82–85 (2005).
Giovannoni, S. J. et al. Genome streamlining in a cosmopolitan oceanic bacterium. Science 309, 1242–1245 (2005).
Tripp, H. J. et al. SAR11 marine bacteria require exogenous reduced sulphur for growth. Nature 452, 741–744 (2008).
Tripp, H. J. et al. Unique glycine-activated riboswitch linked to glycine–serine auxotrophy in SAR11. Environ. Microbiol. 11, 230–238 (2009).
Tyson, G. W. et al. Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature 428, 37–43 (2004).
Hallam, S. J. et al. Genomic analysis of the uncultivated marine crenarchaeote Cenarchaeum symbiosum . Proc. Natl Acad. Sci. USA 103, 18296–18301 (2006).
Allen, E. E. et al. Genome dynamics in a natural archaeal population. Proc. Natl Acad. Sci. USA 104, 1883–1888 (2007).
Venter, J. C. et al. Environmental genome shotgun sequencing of the Sargasso Sea. Science 304, 66–74 (2004).
Rusch, D. B. et al. The Sorcerer II Global Ocean Sampling expedition: northwest Atlantic through eastern tropical Pacific. PLoS Biol. 5, e77 (2007).
Yooseph, S. et al. The Sorcerer II Global Ocean Sampling expedition: expanding the universe of protein families. PLoS Biol. 5, e16 (2007). This was the first attempt to identify protein-family clusters globally, based on public data combined with some 6 million newly predicted peptides from a metagenomic sampling of surface-water marine bacterioplankton.
Tyson, G. W. et al. Genome-directed isolation of the key nitrogen fixer Leptospirillum ferrodiazotrophum sp. nov. from an acidophilic microbial community. Appl. Environ. Microbiol. 71, 6319–6324 (2005).
DeLong, E. F. et al. Community genomics among stratified microbial assemblages in the ocean's interior. Science 311, 496–503 (2006).
Dinsdale, E. A. et al. Functional metagenomic profiling of nine biomes. Nature 452, 629–632 (2008).
Zehr, J. P. et al. Globally distributed uncultivated oceanic N2-fixing cyanobacteria lack oxygenic photosystem II. Science 322, 1110–1112 (2008).
Béjà, O. et al. Bacterial rhodopsin: evidence for a new type of phototrophy in the sea. Science 289, 1902–1906 (2000). This paper reports the first observation and characterization of ion-pumping rhodopsins in the domain Bacteria, a discovery enabled by metagenomic sampling and analyses.
Béjà, O., Spudich, E. N., Spudich, J. L., Leclerc, M. & DeLong, E. F. Proteorhodopsin phototrophy in the ocean. Nature 411, 786–789 (2001).
Sabehi, G. et al. Novel proteorhodopsin variants from the Mediterranean and Red Seas. Environ. Microbiol. 5, 842–849 (2003).
de la Torre, J. R. et al. Proteorhodopsin genes are distributed among divergent marine bacterial taxa. Proc. Natl Acad. Sci. USA 100, 12830–12835 (2003).
Sabehi, G., Beja, O., Suzuki, M. T., Preston, C. M. & DeLong, E. F. Different SAR86 subgroups harbour divergent proteorhodopsins. Environ. Microbiol. 6, 903–910 (2004).
Sabehi, G. et al. New insights into metabolic properties of marine bacteria encoding proteorhodopsins. PLoS Biol. 3, e273 (2005).
Frigaard, N. U., Martinez, A., Mincer, T. J. & DeLong, E. F. Proteorhodopsin lateral gene transfer between marine planktonic Bacteria and Archaea. Nature 439, 847–850 (2006).
McCarren, J. & DeLong, E. F. Proteorhodopsin photosystem gene clusters exhibit co-evolutionary trends and shared ancestry among diverse marine microbial phyla. Environ. Microbiol. 9, 846–858 (2007).
Martinez, A., Bradley, A. S., Waldbauer, J. R., Summons, R. E. & DeLong, E. F. Proteorhodopsin photosystem gene expression enables photophosphorylation in a heterologous host. Proc. Natl Acad. Sci. USA 104, 5590–5595 (2007).
Gomez-Consarnau, L. et al. Light stimulates growth of proteorhodopsin-containing marine Flavobacteria. Nature 445, 210–213 (2007).
Stingl, U., Desiderio, R. A., Cho, J. C., Vergin, K. L. & Giovannoni, S. J. The SAR92 clade: an abundant coastal clade of culturable marine bacteria possessing proteorhodopsin. Appl. Environ. Microbiol. 73, 2290–2296 (2007).
Béjà, O. et al. Unsuspected diversity among marine aerobic anoxygenic phototrophs. Nature 415, 630–633 (2002).
Cho, J. C. et al. Polyphyletic photosynthetic reaction centre genes in oligotrophic marine Gammaproteobacteria. Environ. Microbiol. 9, 1456–1463 (2007).
Fuchs, B. M. et al. Characterization of a marine gammaproteobacterium capable of aerobic anoxygenic photosynthesis. Proc. Natl Acad. Sci. USA 104, 2891–2896 (2007).
Treusch, A. H. et al. Novel genes for nitrite reductase and Amo-related proteins indicate a role of uncultivated mesophilic Crenarchaeota in nitrogen cycling. Environ. Microbiol. 7, 1985–1995 (2005). This is the first report presenting definitive metagenomic evidence for the occurrence of nitrification-associated genes (encoding ammonia monooxygenase subunits A and B) in non-thermophilic Crenarchaeota.
Konneke, M. et al. Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature 437, 543–546 (2005). This is the first report to prove the existence of chemolithoautotrophic, ammonia-oxidizing, non-thermophilic Crenarchaeota by their isolation in pure culture.
Hallam, S. J. et al. Pathways of carbon assimilation and ammonia oxidation suggested by environmental genomic analyses of marine Crenarchaeota. PLoS Biol. 4, e95 (2006).
Turnbaugh, P. J. et al. The human microbiome project. Nature 449, 804–810 (2007).
Mou, X., Hodson, R. E. & Moran, M. A. Bacterioplankton assemblages transforming dissolved organic compounds in coastal seawater. Environ. Microbiol. 9, 2025–2037 (2007).
Neufeld, J. D., Wagner, M. & Murrell, J. C. Who eats what, where and when? Isotope-labelling experiments are coming of age. ISME J. 1, 103–110 (2007).
Poretsky, R. S. et al. Analysis of microbial gene transcripts in environmental samples. Appl. Environ. Microbiol. 71, 4121–4126 (2005).
Frias-Lopez, J. et al. Microbial community gene expression in ocean surface waters. Proc. Natl Acad. Sci. USA 105, 3805–3810 (2008). This is the first report of a directed, massively parallel approach that sequenced a sample of the transcriptome in planktonic microbial assemblages by using pyrosequencing.
Shi, Y., Tyson, G. W. & DeLong, E. F. Metatranscriptomics reveals unique microbial small RNAs in the ocean's water column. Nature 459, 266–269 (2009).
Field, D. et al. The minimum information about a genome sequence (MIGS) specification. Nature Biotechnol. 26, 541–547 (2008).
Markowitz, V. M. et al. IMG/M: a data management and analysis system for metagenomes. Nucleic Acids Res. 36, D534–D538 (2008).
Seshadri, R., Kravitz, S. A., Smarr, L., Gilna, P. & Frazier, M. CAMERA: a community resource for metagenomics. PLoS Biol. 5, e75 (2007).
Meyer, F. et al. The metagenomics RAST server — a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinformatics 9, 386 (2008).
Anderson, R. et al. A new vision of ocean biogeochemistry after a decade of the Joint Global Ocean Flux Study (JGOFS). Ambio 10, 4–30 (2001).
Karl, D. M., Bidigare, R. R. & Letelier, R. M. Long-term changes in plankton community structure and productivity in the North Pacific Subtropical Gyre: the domain shift hypothesis. Deep-Sea Res. II 48, 1449–1470 (2001).
Karl, D. M. Microbial oceanography: paradigms, processes and promise. Nature Rev. Microbiol. 5, 759–769 (2007).
DeLong, E. F. Towards microbial systems science: integrating microbial perspective, from genomes to biomes. Environ. Microbiol. 4, 9–10 (2002).
Doney, S., Abbott, M., Cullen, J., Kar, I. D. & Rothstein, L. From genes to ecosystems: the ocean's new frontier. Front. Ecol. Environ. 2, 457–466 (2004).
Fuhrman, J. A. et al. Annually reoccurring bacterial communities are predictable from ocean conditions. Proc. Natl Acad. Sci. USA 103, 13104–13109 (2006).
Margulies, M. et al. Genome sequencing in microfabricated high-density picolitre reactors. Nature 437, 376–380 (2005).
Eid, J. et al. Real-time DNA sequencing from single polymerase molecules. Science 323, 133–138 (2009).
Korlach, J. et al. Selective aluminum passivation for targeted immobilization of single DNA polymerase molecules in zero-mode waveguide nanostructures. Proc. Natl Acad. Sci. USA 105, 1176–1181 (2008).
Binga, E. K., Lasken, R. S. & Neufeld, J. D. Something from (almost) nothing: the impact of multiple displacement amplification on microbial ecology. ISME J. 2, 233–241 (2008).
Ishoey, T., Woyke, T., Stepanauskas, R., Novotny, M. & Lasken, R. S. Genomic sequencing of single microbial cells from environmental samples. Curr. Opin. Microbiol. 11, 198–204 (2008).
Lasken, R. S. & Stockwell, T. B. Mechanism of chimera formation during the Multiple Displacement Amplification reaction. BMC Biotechnol. 7, 19 (2007).
Marcy, Y. et al. Dissecting biological 'dark matter' with single-cell genetic analysis of rare and uncultivated TM7 microbes from the human mouth. Proc. Natl Acad. Sci. USA 104, 11889–11894 (2007).
Sorek, R. et al. Genome-wide experimental determination of barriers to horizontal gene transfer. Science 318, 1449–1452 (2007).
Béjà, O. et al. Construction and analysis of bacterial artificial chromosome libraries from a marine microbial assemblage. Environ. Microbiol. 2, 516–529 (2000).
Pham, V. D., Konstantinidis, K. T., Palden, T. & DeLong, E. F. Phylogenetic analyses of ribosomal DNA-containing bacterioplankton genome fragments from a 4000 m vertical profile in the North Pacific Subtropical Gyre. Environ. Microbiol. 10, 2313–2330 (2008).
Noguchi, H., Park, J. & Takagi, T. MetaGene: prokaryotic gene finding from environmental genome shotgun sequences. Nucleic Acids Res. 34, 5623–5630 (2006).
Krause, L. et al. Finding novel genes in bacterial communities isolated from the environment. Bioinformatics 22, e281–e289 (2006).
Krause, L. et al. Phylogenetic classification of short environmental DNA fragments. Nucleic Acids Res. 36, 2230–2239 (2008).
von Mering, C. et al. Quantitative phylogenetic assessment of microbial communities in diverse environments. Science 315, 1126–1130 (2007).
Tringe, S. G. et al. Comparative metagenomics of microbial communities. Science 308, 554–557 (2005).
Dalevi, D. et al. Annotation of metagenome short reads using proxygenes. Bioinformatics 24, i7–i13 (2008).
Harrington, E. D. et al. Quantitative assessment of protein function prediction from metagenomics shotgun sequences. Proc. Natl Acad. Sci. USA 104, 13913–13918 (2007).
Rodriguez-Brito, B., Rohwer, F. & Edwards, R. A. An application of statistics to comparative metagenomics. BMC Bioinformatics 7, 162 (2006).
Gianoulis, T. A. et al. Quantifying environmental adaptation of metabolic pathways in metagenomics. Proc. Natl Acad. Sci. USA 106, 1374–1379 (2009). Canonical correlation analyses identified metabolic pathways in metagenomic data sets that maximally co-varied with multiple environmental variables, revealing co-variation of amino-acid transport and cofactor synthesis across communities and environments.
Acknowledgements
I thank my current and former students, colleagues and co-workers for sharing their ideas, insights, enthusiasm and inspiration. Work in my laboratory is supported by grants from the US National Science Foundation, the US Department of Energy, the Gordon and Betty Moore Foundation and the Agouron Institute. This article is a contribution from the NSF Science and Technology Center, and the Center for Microbial Oceanography: Research and Education.
Author information
Authors and Affiliations
Ethics declarations
Competing interests
The author declares no competing financial interests.
Additional information
Reprints and permissions information is available at http://www.nature.com/reprints.
Correspondence should be addressed to the author (delong@mit.edu).
Rights and permissions
About this article
Cite this article
DeLong, E. The microbial ocean from genomes to biomes. Nature 459, 200–206 (2009). https://doi.org/10.1038/nature08059
Published:
Issue Date:
DOI: https://doi.org/10.1038/nature08059
This article is cited by
-
Disentangling environmental effects in microbial association networks
Microbiome (2021)
-
Scale-free vertical tracking microscopy
Nature Methods (2020)
-
Eukaryotic Plankton Species Diversity in the Western Channel of the Korea Strait using 18S rDNA Sequences and its Implications for Water Masses
Ocean Science Journal (2018)
-
Accessing the genomic information of unculturable oceanic picoeukaryotes by combining multiple single cells
Scientific Reports (2017)
-
Dynamic genetic features of eukaryotic plankton diversity in the Nakdong River estuary of Korea
Chinese Journal of Oceanology and Limnology (2017)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.