Abstract
Marine diatoms rose to prominence about 100 million years ago and today generate most of the organic matter that serves as food for life in the sea. They exist in a dilute world where compounds essential for growth are recycled and shared, and they greatly influence global climate, atmospheric carbon dioxide concentration and marine ecosystem function. How these essential organisms will respond to the rapidly changing conditions in today's oceans is critical for the health of the environment and is being uncovered by studies of their genomes.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
The model diatom Phaeodactylum tricornutum provides insights into the diversity and function of microeukaryotic DNA methyltransferases
Communications Biology Open Access 09 March 2023
-
Ecosystem services provided by freshwater and marine diatoms
Hydrobiologia Open Access 01 September 2022
-
Climate variability and multi-decadal diatom abundance in the Northeast Atlantic
Communications Earth & Environment Open Access 16 July 2022
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout




References
Nelson, D. M., Treguer, P., Brzezinski, M. A., Leynaert, A. & Queguiner, B. Production and dissolution of biogenic silica in the ocean: revised global estimates, comparison with regional data and relationship to biogenic sedimentation. Glob. Biogeochem. Cycles 9, 359–372 (1995).
Field, C. B., Behrenfeld, M. J., Randerson, J. T. & Falkowski, P. Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281, 237–240 (1998).
Sarthou, G., Timmermans, K. R., Blain, S. & Treguer, P. Growth physiology and fate of diatoms in the ocean: a review. J. Sea Res. 53, 25–42 (2005).
Denman, K. L. Climate change, ocean processes and ocean iron fertilization. Mar. Ecol. Prog. Ser. 364, 219–225 (2008).
Armbrust, E. V. et al. The genome of the diatom Thalassiosira pseudonana: ecology, evolution, and metabolism. Science 306, 79–86 (2004). This paper describes results from the first diatom genome-sequencing project.
Bowler, C. et al. The Phaeodactylum reveals the evolutionary history of diatom genomes. Nature 456, 239–244 (2008). This paper provides the first whole-genome comparison of two diatoms and identifies the presence in the genome of numerous bacterial genes.
Kooistra, W. H. C. F., Gersonde, R., Medlin, L. K. & Mann, D. G. in Evolution of Primary Producers in the Sea (eds Falkowski, P. G. & Knoll, A. H.) 207–249 (Elsevier, 2007).
Morel, F. M. M. & Price, N. M. The biogeochemical cycles of trace elements in the oceans. Science 300, 944–947 (2003).
Villareal, T. A. et al. Upward transport of oceanic nitrate by migrating diatom mats. Nature 397, 423–425 (1999).
Vardi, A. et al. A diatom gene regulating nitric-oxide signalling and susceptibility to diatom-derived aldehydes. Curr. Biol. 18, 895–899 (2008).
Ianora, A. et al. Aldehyde suppression of copepod recruitment in blooms of a ubiquitous planktonic diatom. Nature 429, 403–407 (2004).
Parker, M. S., Mock, T. & Armbrust, E. V. Genomic insights into marine microalgae. Annu. Rev. Genet. 42, 619–645 (2008).
Yoon, H. S., Hackett, J. D., Ciniglia, C., Pinto, G. & Bhattachrya, D. A molecular timeline for the origin of photosynthetic eukaryotes. Mol. Biol. Evol. 21, 809–818 (2004).
Reyes-Prieto, A., Hackett, J. D., Soares, M. B., Bonaldo, M. F. & Bhattacharya, D. Cyanobacterial contribution to algal nuclear genomes is primarily limited to plastid functions. Curr. Biol. 16, 2320–2325 (2006).
Huang, J. & Gogarten, J. P. Did an ancient chlamydial endosymbiosis facilitate the establishment of primary plastids? Genome Biol. 8, R99 (2007).
Becker, B., Hoef-Emden, K. & Melkonian, M. Chlamydial genes shed light on the evolution of phototrophic eukaryotes. BMC Evol. Biol. 8, 203 (2008).
Allen, A. E., Vardi, A. & Bowler, C. An ecological and evolutionary context for integrated nitrogen metabolism and related signaling pathways in marine diatoms. Curr. Opin. Plant Biol. 9, 264–273 (2006).
Montsant, A. et al. Identification and comparative genomic analysis of signaling and regulatory components in the diatom Thalassiosira pseudonana . J. Phycol. 43, 585–604 (2007).
Croft, M. T., Lawrence, A. D., Raux-Deery, E., Warren, M. J. & Smith, A. G. Algae acquire vitamin B12 through a symbiotic relationship with bacteria. Nature 438, 90–93 (2005).
Droop, M. R. Vitamins, phytoplankton and bacteria: symbiosis or scavenging. J. Plankton Res. 29, 107–113 (2007).
Reimann, L., Steward, G. F. & Azam, F. Dynamics of bacterial community composition and activity during a mesocosm diatom bloom. Appl. Environ. Microbiol. 66, 578–587 (2000).
Lau, W. W. Y., Keil, R. G. & Armbrust, E. V. Succession and diel transcriptional response of the glycolate-utilizing component of the bacterial community during a spring phytoplankton bloom. Appl. Environ. Microbiol. 73, 2440–2450 (2007).
Kaczmarska, I. et al. Diversity and distribution of epibiotic bacteria on Pseudo-nitzschia multiseries (Bacillariophyceae) in culture, and comparison with those on diatoms in native seawater. Harmful Algae 4, 725–741 (2005).
Foster, R. A. & Zehr, J. P. Characterization of diatom–cyanobacteria symbioses on the basis of nifH, hetR and 16S rRNA sequences. Environ. Microbiol. 8, 1913–1925 (2006).
Schmid, A.-M. M. Endobacteria in the diatom Pinnularia (Bacillariophyceae). I. 'Scattered ct-nucleoids' explained: DAPI–DNA complexes stem from exoplastidial bacteria boring into the chloroplasts. J. Phycol. 39, 122–138 (2003).
Sorhannus, U. A nuclear-encoded small-subunit ribosomal RNA timescale for diatom evolution. Mar. Micropaleontol. 65, 1–12 (2007).
Sims, P. A., Mann, D. G. & Medlin, L. K. Evolution of the diatoms: insights from fossil, biological and molecular data. Phycologia 45, 361–402 (2006). This paper provides detailed information that couples geological data with diatom morphology and palaeological distributions.
Falkowski, P. G. et al. The evolution of modern eukaryotic phytoplankton. Science 305, 354–360 (2004).
Katz, M. E. et al. Biological overprint of the geological carbon cycle. Mar. Geol. 217, 323–338 (2005).
Falkowski, P. G. et al. The rise of oxygen over the past 205 million years and the evolution of large placental mammals. Science 309, 2202–2204 (2005).
Guidry, M. W., Arvidson, R. S. & MacKenzie, F. T. in Evolution of Primary Producers in the Sea (eds Falkowski, P. G. & Knoll, A. H.) 377–403 (Elsevier, 2007).
Falkowski, P. G. & Oliver, M. J. Mix and max: how climate selects phytoplankton. Nature Rev. Microbiol. 5, 813–819 (2007).
Rabosky, D. L. & Sorhannus, U. Diversity dynamics of marine planktonic diatoms across the Cenozoic. Nature 457, 183–187 (2009).
Zielinski, U. & Gersonde, R. Diatom distribution in Southern Ocean surface sediments (Atlantic sector): implications for paloeenvironmental reconstructions. Palaeogeogr. Palaeoclimat. Palaeoecol. 129, 213–250 (1997).
Kroth, P. G. et al. A model for carbohydrate metabolism in the diatom Phaeodactylum tricornutum deduced from comparative whole genome analysis. PLoS ONE 3, e1426 (2008).
Moore, J. K., Doney, S. C., Glover, D. M. & Fung, I. Iron cycling and nutrient-limitation patterns in surface waters of the world ocean. Deep-Sea Res. II 49, 463–507 (2002).
Marchetti, A., Maldonado, M. T., Lane, E. S. & Harrison, P. J. Iron requirements of the pennate diatom Pseudo-nitzschia: comparison of oceanic (HNLC) and coastal species. Limnol. Oceanogr. 51, 2092–2101 (2006).
Sunda, W. G., Swift, D. G. & Huntsman, S. A. Low iron requirement for growth in oceanic phytoplankton. Nature 351, 55–57 (1991).
Strzepek, R. F. & Harrison, P. J. Photosynthetic architecture differs in coastal and oceanic diatoms. Nature 431, 689–692 (2004). This paper provides the first molecular-based description of photosynthetic differences between coastal and open-ocean diatoms.
Peers, G. & Price, N. M. Copper-containing plastocyanin used for electron transport by an oceanic diatom. Nature 441, 341–344 (2006).
Kustka, A. B., Allen, A. E. & Morel, F. M. M. Sequence analysis and transcriptional regulation of iron acquisition genes in two marine diatoms. J. Phycol. 43, 715–729 (2007).
Allen, A. E. et al. Whole-cell response of the pennate diatom Phaeodactylum tricornutum to iron starvation. Proc. Natl Acad. Sci. USA 105, 10438–10443 (2008).
Jickells, T. D. et al. Global iron connections between desert dust, ocean biogeochemistry, and climate. Science 308, 67–71 (2005).
Marchetti, A. et al. Ferritin is used for iron storage in bloom-forming marine pennate diatoms. Nature 457, 467–470 (2008). This was the first molecular description of an iron-storage protein in diatoms and discusses the potential selective advantages conveyed by this protein.
Drum, R. W. & Gordon, R. Star Trek replicators and diatom nanotechnology. Trends Biotechnol. 21, 325–328 (2003).
Tréguer, P. et al. The silica balance in the world ocean: a reestimate. Science 268, 375–379 (1995).
Vrieling, E. G. et al. Salinity-dependent diatom biosilicification implies an important role of external ionic strength. Proc. Natl Acad. Sci. USA 104, 10441–10446 (2007).
Bidle, K. D., Maganelli, M. & Azam, F. Regulation of oceanic silicon and carbon preservation by temperature control on bacteria. Science 298, 1980–1984 (2002).
Kroger, N., Lorenz, S., Brunner, E. & Sumper, M. Self-assembly of highly phosphorylated silaffins and their function in biosilica morphogenesis. Science 298, 584–586 (2002). This paper describes the isolation of native silaffins from the cell wall and the function of these proteins during silica precipitation.
Kroger, N., Deutzmann, R., Bergsdorf, C. & Sumper, M. Species-specific polyamines from diatoms control silica morphology. Proc. Natl Acad. Sci. USA 97, 14133–14138 (2000).
Wenzel, S., Hett, R., Richthamer, P. & Sumper, M. Silacidins: highly acidic phosphopeptides from diatom shells assist in silica precipitation in vitro . Angew. Chem. Int. Edn Engl. 120, 1753–1756 (2008).
Mock, T. et al. Whole-genome expression profiling of the marine diatom Thalassiosira pseudonana identifies genes involved in silicon bioproceses. Proc. Natl Acad. Sci. USA 105, 1579–1584 (2008).
Siegenthaler, U. et al. Stable carbon cycle–climate relationship during the late Pleistocene. Science 310, 1313–1317 (2005).
Matsumoto, K. & Sarmiento, J. L. A corollary to the silicic acid leakage hypothesis. Paleoceanography 23, PA2203 (2008).
Boyd, P. W. et al. Mesoscale iron enrichment experiments 1993–2005: synthesis and future directions. Science 315, 612–617 (2007).
Bates, S. S. & Trainer, V. L. in Ecology of Harmful Algae (eds Graneli, E. & Turner, J. T.) Ch. 7 (Springer, 2006).
Goldstein, T. et al. Novel symptomatology and changing epidemiology of domoic acid toxicosis in California sea lions (Zalophus californianus): an increasing risk to marine mammal health. Proc. R. Soc. B 275, 267–276 (2008).
de Baar, H. J. W. et al. Synthesis of iron fertilization experiments: from the iron age in the age of enlightenment. J. Geophys. Res. 110, C09S16 (2005).
Marchetti, A. et al. Identification and assessment of domoic acid production in oceanic Pseudo-nitzschia (Bacillariophyceae) from iron-limited waters in the northeast subarctic Pacific. J. Phycol. 44, 650–661 (2008).
McDougald, D., Rice, S. A. & Kjelleberg, S. Bacterial quorum sensing and interference by naturally occurring biomimics. Anal. Bioanal. Chem. 387, 445–453 (2007).
Feely, R. A., Sabine, C. L., Hernandez-Ayon, J. M., Ianson, D. & Hales, B. Evidence for upwelling of corrosive 'acidified' water onto the continental shelf. Science 320, 1490–1492 (2008).
McNeil, B. I. & Matear, R. J. Southern Ocean acidification: a tipping point at 450-ppm atmospheric CO2 . Proc. Natl Acad. Sci. USA 105, 18860–18864 (2008).
Levitus, S., Antonov, J. I., Boyer, T. P. & Stephens, C. Warming of the world ocean. Science 287, 2225–2229 (2000).
Toggweiler, J. R. & Russell, J. Ocean circulation in a warming climate. Nature 451, 286–288 (2008).
Polovina, J. J., Howell, E. A. & Abecassis, M. Ocean's least productive waters are expanding. Geophys. Res. Lett. 35, L03618 (2008).
Boning, C. W., Dispert, A., Visbeck, M., Rintoul, S. R. & Schwarzkopf, F. U. The response of the Antarctic Circumpolar Current to recent climate change. Nature Geosci. 1, 864–869 (2008).
Jackson, J. B. C. Ecological extinction and evolution in the brave new ocean. Proc. Natl Acad. Sci. USA 105, 11458–11465 (2008).
Cloern, J. E., Jassby, A. D., Thompson, J. K. & Hieb, K. A. A cold phase of the East Pacific triggers new phytoplankton blooms in San Francisco Bay. Proc. Natl Acad. Sci. USA 104, 18561–18565 (2007).
Richardson, A. J. & Poloczanska, E. S. Under-resourced, under threat. Science 320, 1294–1295 (2008).
Smetacek, V. & Cloern, J. E. On phytoplankton trends. Science 319, 1346–1348 (2008).
Cermeno, P. et al. The role of nutricline depth in regulating the ocean carbon cycle. Proc. Natl Acad. Sci. USA 205, 20344–20349 (2008). This paper predicts phytoplankton community structure in oceans of the future and the resultant effects on the carbon cycle.
Dore, J. E., Letelier, R. M., Church, M. J., Lukas, R. & Karl, D. M. Summer phytoplankton blooms in the oligotrophic North Pacific Subtropical Gyre: historical perspective and recent observations. Prog. Oceanogr. 76, 2–38 (2008).
Sedwick, P. N., Sholkovitz, E. R. & Church, T. M. Impact of anthropogenic combustion emissions on the fractional solubility of aerosol iron: evidence from the Sargasso Sea. Geochem. Geophys. Geosyst. 8, Q10Q06 (2007).
Acknowledgements
I am grateful to members of my laboratory and to G. Rocap and S. Francis for discussion and edits of the manuscript. Support was provided by funding from the Gordon and Betty Moore Foundation Marine Microbiology Initiative, the US National Science Foundation and the National Institute of Environmental Health Sciences.
Author information
Authors and Affiliations
Ethics declarations
Competing interests
The author declares no competing financial interests.
Additional information
Reprints and permissions information is available at http://www.nature.com/reprints.
Correspondence should be addressed to the author (armbrust@ocean.washington.edu).
Rights and permissions
About this article
Cite this article
Armbrust, E. The life of diatoms in the world's oceans. Nature 459, 185–192 (2009). https://doi.org/10.1038/nature08057
Published:
Issue Date:
DOI: https://doi.org/10.1038/nature08057
This article is cited by
-
The model diatom Phaeodactylum tricornutum provides insights into the diversity and function of microeukaryotic DNA methyltransferases
Communications Biology (2023)
-
Assessment of ecosystem health of a micro-level Ramsar coastal zone in the Vembanad Lake, Kerala, India
Environmental Monitoring and Assessment (2023)
-
Ecosystem services provided by freshwater and marine diatoms
Hydrobiologia (2023)
-
Comparative analysis of Thalassionema chloroplast genomes revealed hidden biodiversity
BMC Genomics (2022)
-
The exceptional preservation of Aix-en-Provence spider fossils could have been facilitated by diatoms
Communications Earth & Environment (2022)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.