Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Five-dimensional optical recording mediated by surface plasmons in gold nanorods

Abstract

Multiplexed optical recording provides an unparalleled approach to increasing the information density beyond 1012 bits per cm3 (1 Tbit cm-3) by storing multiple, individually addressable patterns within the same recording volume. Although wavelength1,2,3, polarization4,5,6,7,8 and spatial dimensions9,10,11,12,13 have all been exploited for multiplexing, these approaches have never been integrated into a single technique that could ultimately increase the information capacity by orders of magnitude. The major hurdle is the lack of a suitable recording medium that is extremely selective in the domains of wavelength and polarization and in the three spatial domains, so as to provide orthogonality in all five dimensions. Here we show true five-dimensional optical recording by exploiting the unique properties of the longitudinal surface plasmon resonance (SPR) of gold nanorods. The longitudinal SPR exhibits an excellent wavelength and polarization sensitivity, whereas the distinct energy threshold required for the photothermal recording mechanism provides the axial selectivity. The recordings were detected using longitudinal SPR-mediated two-photon luminescence, which we demonstrate to possess an enhanced wavelength and angular selectivity compared to conventional linear detection mechanisms. Combined with the high cross-section of two-photon luminescence, this enabled non-destructive, crosstalk-free readout. This technique can be immediately applied to optical patterning, encryption and data storage, where higher data densities are pursued.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Sample structure and patterning.
Figure 2: Photothermal patterning.
Figure 3: Readout using two-photon luminescence.
Figure 4: Five-dimensional patterning and readout.

References

  1. 1

    Moerner, W. E. Persistent Spectral Hole-Burning: Science and Applications (Springer, 1988)

    Book  Google Scholar 

  2. 2

    Ditlbacher, H., Krenn, J. R., Lamprecht, B., Leitner, A. & Aussenegg, F. R. Spectrally coded optical data storage by metal nanoparticles. Opt. Lett. 25, 563–565 (2000)

    ADS  CAS  Article  Google Scholar 

  3. 3

    Pham, H. H., Gourevich, I., Oh, J. K., Jonkman, J. E. N. & Kumacheva, E. A multidye nanostructured material for optical data storage and security data encryption. Adv. Mater. 16, 516–520 (2004)

    CAS  Article  Google Scholar 

  4. 4

    Alasfar, S. et al. Polarization-multiplexed optical memory with urethane-urea copolymers. Appl. Opt. 38, 6201–6204 (1999)

    ADS  CAS  Article  Google Scholar 

  5. 5

    Niidome, Y., Urakawa, S., Kawahara, M. & Yamada, S. Dichroism of poly(vinylalcohol) films containing gold nanorods induced by polarized pulsed-laser irradiation. Jpn J. Appl. Phys. 42, 1749–1750 (2003)

    ADS  CAS  Article  Google Scholar 

  6. 6

    Wilson, O., Wilson, G. J. & Mulvaney, P. Laser writing in polarized silver nanorod films. Adv. Mater. 14, 1000–1004 (2002)

    CAS  Article  Google Scholar 

  7. 7

    Pérez-Juste, J., Rodríguez-González, B., Mulvaney, P. & Liz-Marzán, L. M. Optical control and patterning of gold-nanorod-poly(vinyl alcohol) nanocomposite films. Adv. Funct. Mater. 15, 1065–1071 (2005)

    Article  Google Scholar 

  8. 8

    Li, X. P., Chon, J. W. M., Wu, S. H., Evans, R. A. & Gu, M. Rewritable polarization-encoded multilayer data storage in 2,5-dimethyl-4-(p-nitrophenylazo)anisole doped polymer. Opt. Lett. 32, 277–279 (2007)

    ADS  CAS  Article  Google Scholar 

  9. 9

    Strickler, J. & Webb, W. Three-dimensional optical data storage in refractive media by two-photon point excitation. Opt. Lett. 16, 1780–1782 (1991)

    ADS  CAS  Article  Google Scholar 

  10. 10

    Heanue, J. F., Bashaw, M. C. & Hesselink, L. Volume holographic storage and retrieval of digital data. Science 265, 749–752 (1994)

    ADS  CAS  Article  Google Scholar 

  11. 11

    Cumpston, B. H. et al. Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication. Nature 398, 51–54 (1999)

    ADS  CAS  Article  Google Scholar 

  12. 12

    Kawata, S. & Kawata, Y. Three-dimensional optical data storage using photochromic materials. Chem. Rev. 100, 1777–1788 (2000)

    CAS  Article  Google Scholar 

  13. 13

    Day, D., Gu, M. & Smallridge, A. Rewritable 3D bit optical data storage in a PMMA-based photorefractive polymer. Adv. Mater. 13, 1005–1007 (2001)

    CAS  Article  Google Scholar 

  14. 14

    Novo, C. et al. Contributions from radiation damping and surface scattering to the linewidth of the longitudinal plasmon band of gold nanorods: a single particle study. Phys. Chem. Chem. Phys. 8, 3540–3546 (2006)

    MathSciNet  CAS  Article  Google Scholar 

  15. 15

    Sönnichsen, C. et al. Drastic reduction of plasmon damping in gold nanorods. Phys. Rev. Lett. 88, 077402 (2002)

    ADS  Article  Google Scholar 

  16. 16

    Chang, S. S., Shih, C. W., Chen, C. D., Lai, W. C. & Wang, C. R. C. The shape transition of gold nanorods. Langmuir 15, 701–709 (1999)

    CAS  Article  Google Scholar 

  17. 17

    Link, S., Burda, C., Nikoobakht, B. & El-Sayed, M. A. Laser-induced shape changes of colloidal gold nanorods using femtosecond and nanosecond laser pulses. J. Phys. Chem. B 104, 6152–6163 (2000)

    CAS  Article  Google Scholar 

  18. 18

    Habenicht, A., Olapinski, M., Burmeister, F., Leiderer, P. & Boneberg, J. Jumping nanodroplets. Science 309, 2043–2045 (2005)

    ADS  CAS  Article  Google Scholar 

  19. 19

    Chon, J. W. M., Bullen, C., Zijlstra, P. & Gu, M. Spectral encoding on gold nanorods doped in a silica sol-gel matrix and its application to high density optical data storage. Adv. Funct. Mater. 17, 875–880 (2007)

    CAS  Article  Google Scholar 

  20. 20

    Zijlstra, P., Chon, J. W. M. & Gu, M. Effect of heat accumulation on the dynamic range of a gold nanorod doped nanocomposite for optical laser writing and patterning. Opt. Express 15, 12151–12160 (2007)

    ADS  CAS  Article  Google Scholar 

  21. 21

    Wang, H. F. et al. In vitro and in vivo two-photon luminescence imaging of single gold nanorods. Proc. Natl Acad. Sci. USA 102, 15752–15756 (2005)

    ADS  CAS  Article  Google Scholar 

  22. 22

    Bouhelier, A. et al. Surface plasmon characteristics of tunable photoluminescence in single gold nanorods. Phys. Rev. Lett. 95, 267405 (2005)

    ADS  CAS  Article  Google Scholar 

  23. 23

    Xu, C. & Webb, W. W. Measurement of two-photon excitation cross sections of molecular fluorophores with data from 690 to 1050 nm. J. Opt. Soc. Am. B 13, 481–491 (1996)

    ADS  CAS  Article  Google Scholar 

  24. 24

    Mohamed, M. B., Volkov, V., Link, S. & El-Sayed, M. A. The ’lightning’ gold nanorods: fluorescence enhancement of over a million compared to the gold metal. Chem. Phys. Lett. 317, 517–523 (2000)

    ADS  CAS  Article  Google Scholar 

  25. 25

    Dulkeith, E. et al. Plasmon emission in photoexcited gold nanoparticles. Phys. Rev. B 70, 205424 (2004)

    ADS  Article  Google Scholar 

  26. 26

    Ramakrishna, G., Varnavski, O., Kim, J., Lee, D. & Goodson, T. Quantum sized gold clusters as efficient two photon absorbers. J. Am. Chem. Soc. 130, 5032–5033 (2008)

    CAS  Article  Google Scholar 

  27. 27

    Mooradian, A. Photoluminescence of metals. Phys. Rev. Lett. 22, 185–187 (1969)

    ADS  CAS  Article  Google Scholar 

  28. 28

    Tanaka, T. & Kawata, S. Three-dimensional multi-layered fluorescent optical disk. In Technical Digest Int. Symp. Opt. Mem. Tu-G-01 (Adthree Publishing, Tokyo, 2007)

    Google Scholar 

  29. 29

    Nikoobakht, B. & El-Sayed, M. A. Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem. Mater. 15, 1957–1962 (2003)

    CAS  Article  Google Scholar 

  30. 30

    Zijlstra, P., Bullen, C., Chon, J. W. M. & Gu, M. High-temperature seedless synthesis of gold nanorods. J. Phys. Chem. B 110, 19315–19318 (2006)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the LINTEC Corporation for supplying the pressure-sensitive adhesive and the Australian Research Council for financial support. We thank R. Evans, W. Rowlands and D. Buso for carefully reading the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to James W. M. Chon.

Supplementary information

Supplementary Information

This file contains Supplementary Methods and Data, Supplementary Figures 1-8 with Legends and Supplementary References. (PDF 605 kb)

Supplementary Movie

This movie shows two-state polarization multiplexed images in three layers, read out in one shot using a CCD and a white light source. (MOV 1440 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zijlstra, P., Chon, J. & Gu, M. Five-dimensional optical recording mediated by surface plasmons in gold nanorods. Nature 459, 410–413 (2009). https://doi.org/10.1038/nature08053

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing