Letter | Published:

Sodium salts in E-ring ice grains from an ocean below the surface of Enceladus

Nature volume 459, pages 10981101 (25 June 2009) | Download Citation



Saturn's moon Enceladus emits plumes of water vapour and ice particles from fractures near its south pole1,2,3,4,5, suggesting the possibility of a subsurface ocean5,6,7. These plume particles are the dominant source of Saturn’s E ring7,8. A previous in situ analysis9 of these particles concluded that the minor organic or siliceous components, identified in many ice grains, could be evidence for interaction between Enceladus’ rocky core and liquid water9,10. It was not clear, however, whether the liquid is still present today or whether it has frozen. Here we report the identification of a population of E-ring grains that are rich in sodium salts (0.5–2% by mass), which can arise only if the plumes originate from liquid water. The abundance of various salt components in these particles, as well as the inferred basic pH, exhibit a compelling similarity to the predicted composition of a subsurface Enceladus ocean in contact with its rock core11. The plume vapour is expected to be free of atomic sodium. Thus, the absence of sodium from optical spectra12 is in good agreement with our results. In the E ring the upper limit for spectroscopy12 is insufficiently sensitive to detect the concentrations we found.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1.

    et al. Identification of a dynamic atmosphere at Enceladus with the Cassini magnetometer. Science 311, 1406–1409 (2006)

  2. 2.

    et al. Enceladus' water vapor plume. Science 311, 1422–1425 (2006)

  3. 3.

    et al. Cassini dust measurements at Enceladus and implications for the origin of the E ring. Science 311, 1416–1418 (2006)

  4. 4.

    et al. Cassini ion and neutral mass spectrometer: Enceladus plume composition and structure. Science 311, 1419–1422 (2006)

  5. 5.

    et al. Cassini observes the active south pole of Enceladus. Science 311, 1393–1401 (2006)

  6. 6.

    et al. Cassini encounters Enceladus: background and the discovery of a south polar hot spot. Science 311, 1401–1405 (2006)

  7. 7.

    , , & Slow dust in Enceladus' plume from condensation and wall collisions in tiger stripe fractures. Nature 451, 685–688 (2008)

  8. 8.

    et al. The E ring in the vicinity of Enceladus. I. Spatial distribution and properties of the ring particles. Icarus 193, 420–437 (2008)

  9. 9.

    et al. The E ring in the vicinity of Enceladus. II. Probing the moon’s interior—the composition of E-ring particles. Icarus 193, 438–454 (2008)

  10. 10.

    , , & Enceladus’ plume: compositional evidence for a hot interior. Icarus 187, 569–573 (2007)

  11. 11.

    An oceanic composition on early and today’s Enceladus. Geophys. Res. Lett. 34, L23203 (2007)

  12. 12.

    et al. No sodium in the vapour plumes of Enceladus. Nature 10.1038/nature08070 (this issue)

  13. 13.

    et al. The Cassini cosmic dust analyzer. Space Sci. Rev. 114, 465–518 (2004)

  14. 14.

    et al. The composition of Saturn's E ring. Mon. Not. R. Astron. Soc. 388, 1588–1596 (2007)

  15. 15.

    , , & Shear heating as the origin of the plumes and heat flux on Enceladus. Nature 447, 289–291 (2007)

  16. 16.

    et al. A clathrate reservoir hypothesis for Enceladus' south polar plume. Science 314, 1764–1766 (2006)

  17. 17.

    & Reaction and solvation of sodium in hydrogen bonded solvent clusters. Phys. Chem. Chem. Phys. 7, 986–990 (2005)

  18. 18.

    et al. Discriminating contamination from particle components in spectra of Cassini’s dust detector CDA. Planet. Space Sci. (in the press)

  19. 19.

    & How to make big molecules fly out of liquid water: applications, features and physics of laser assisted liquid phase dispersion mass spectrometry. Phys. Chem. Chem. Phys. 9, 3335–3360 (2007)

  20. 20.

    & Dynamics of Droplets 245–260 (Springer, 2000)

  21. 21.

    Über das Kalium-Natrium-Verhältnis in Gewässern und die Tonmineralbildung. Naturwissenschaften 54, 613 (1967)

  22. 22.

    & Biogenesis and early life on Earth and Europa: favoured by an alkaline ocean? Astrobiology 2, 123–130 (2002)

  23. 23.

    , , , & The possible origin and persistence of life on Enceladus and detection of biomarkers in the plume. Astrobiology 8, 909–919 (2008)

  24. 24.

    & Association of jets on Enceladus with the warmest regions on its south-polar fractures. Nature 449, 695–697 (2007)

  25. 25.

    & Hydration of the alkali ions in the gas phase. J. Phys. Chem. 74, 1466–1474 (1969)

  26. 26.

    , , & Free sodium-water clusters. Phys. Rev. Lett. 57, 1703–1706 (1986)

  27. 27.

    & Formation of sodium hydroxide in multiple sodium-water cluster collisions. J. Phys. Chem. A 102, 7333–7336 (1998)

  28. 28.

    , & How the Enceladus dust plumes form Saturn’s E ring. Icarus (submitted)

Download references


We thank U. Beckmann, M. Burger, M. Burton, M. Gellert, E. Grün, J. K. Hillier, N. Schneider, F. Spahn, and M. Zolotov for discussions. We acknowledge the efforts of the Cassini team and JPL. The work has been supported by the DLR, the DFG and the Frontier programme of the University of Heidelberg.

Author information


  1. Institut für Geowissenschaften, Universität Heidelberg, 69120 Heidelberg, Germany

    • F. Postberg
  2. Max-Planck-Institut für Kernphysik, 69117 Heidelberg, Germany

    • F. Postberg
    • , S. Kempf
    •  & R. Srama
  3. IGEP,Technische Universität Braunschweig, 38106 Braunschweig, Germany

    • S. Kempf
  4. Nichtlineare Dynamik, Universität Potsdam, 14476 Potsdam–Golm, Germany

    • J. Schmidt
  5. Department of Mathematics, University of Leicester, Leicester LEI 7RH, UK

    • N. Brilliantov
  6. Department of Physics, Moscow State University, 119991 Moscow, Russia

    • N. Brilliantov
  7. Institut für Physikalische Chemie, Universität Göttingen, 37077 Göttingen, Germany

    • A. Beinsen
    •  & B. Abel
  8. Wilhelm-Oswald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig, 04103 Leipzig, Germany

    • B. Abel
  9. Max-Planck-Institut für Dynamik und Selbstorganisation, 37073 Göttingen, Germany

    • U. Buck


  1. Search for F. Postberg in:

  2. Search for S. Kempf in:

  3. Search for J. Schmidt in:

  4. Search for N. Brilliantov in:

  5. Search for A. Beinsen in:

  6. Search for B. Abel in:

  7. Search for U. Buck in:

  8. Search for R. Srama in:

Corresponding author

Correspondence to F. Postberg.

Supplementary information

PDF files

  1. 1.

    Supplementary Information

    This file contains Supplementary Methods and Data, Supplementary Notes, Supplementary Table S1, Supplementary Figures S1-S4 with Legends and Supplementary References.

About this article

Publication history






Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.