Sodium salts in E-ring ice grains from an ocean below the surface of Enceladus


Saturn's moon Enceladus emits plumes of water vapour and ice particles from fractures near its south pole1,2,3,4,5, suggesting the possibility of a subsurface ocean5,6,7. These plume particles are the dominant source of Saturn’s E ring7,8. A previous in situ analysis9 of these particles concluded that the minor organic or siliceous components, identified in many ice grains, could be evidence for interaction between Enceladus’ rocky core and liquid water9,10. It was not clear, however, whether the liquid is still present today or whether it has frozen. Here we report the identification of a population of E-ring grains that are rich in sodium salts (0.5–2% by mass), which can arise only if the plumes originate from liquid water. The abundance of various salt components in these particles, as well as the inferred basic pH, exhibit a compelling similarity to the predicted composition of a subsurface Enceladus ocean in contact with its rock core11. The plume vapour is expected to be free of atomic sodium. Thus, the absence of sodium from optical spectra12 is in good agreement with our results. In the E ring the upper limit for spectroscopy12 is insufficiently sensitive to detect the concentrations we found.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Spectra of E-ring particles with differing Na/H 2 O ratio.
Figure 2: Reproduction of CDA measurements in the laboratory by laser dispersion 19 of salt water.
Figure 3: Schematic of how liquid dispersion and condensation from vapour form ice particles with very different Na content.
Figure 4: Equilibrium concentrations of NaCl in the vapour phase above a subsurface Enceladus water reservoir.


  1. 1

    Dougherty, M. K. et al. Identification of a dynamic atmosphere at Enceladus with the Cassini magnetometer. Science 311, 1406–1409 (2006)

    ADS  CAS  Article  Google Scholar 

  2. 2

    Hansen, C. J. et al. Enceladus' water vapor plume. Science 311, 1422–1425 (2006)

    ADS  CAS  Article  Google Scholar 

  3. 3

    Spahn, F. et al. Cassini dust measurements at Enceladus and implications for the origin of the E ring. Science 311, 1416–1418 (2006)

    ADS  CAS  Article  Google Scholar 

  4. 4

    Waite, J. H. et al. Cassini ion and neutral mass spectrometer: Enceladus plume composition and structure. Science 311, 1419–1422 (2006)

    ADS  CAS  Article  Google Scholar 

  5. 5

    Porco, C. C. et al. Cassini observes the active south pole of Enceladus. Science 311, 1393–1401 (2006)

    ADS  CAS  Article  Google Scholar 

  6. 6

    Spencer, J. R. et al. Cassini encounters Enceladus: background and the discovery of a south polar hot spot. Science 311, 1401–1405 (2006)

    ADS  CAS  Article  Google Scholar 

  7. 7

    Schmidt, J., Brilliantov, N., Spahn, F. & Kempf, S. Slow dust in Enceladus' plume from condensation and wall collisions in tiger stripe fractures. Nature 451, 685–688 (2008)

    ADS  CAS  Article  Google Scholar 

  8. 8

    Kempf, S. et al. The E ring in the vicinity of Enceladus. I. Spatial distribution and properties of the ring particles. Icarus 193, 420–437 (2008)

    ADS  Article  Google Scholar 

  9. 9

    Postberg, F. et al. The E ring in the vicinity of Enceladus. II. Probing the moon’s interior—the composition of E-ring particles. Icarus 193, 438–454 (2008)

    ADS  CAS  Article  Google Scholar 

  10. 10

    Matson, D. L., Castillo, J. C., Lunine, J. & Johnson, T. V. Enceladus’ plume: compositional evidence for a hot interior. Icarus 187, 569–573 (2007)

    ADS  CAS  Article  Google Scholar 

  11. 11

    Zolotov, M. Y. An oceanic composition on early and today’s Enceladus. Geophys. Res. Lett. 34, L23203 (2007)

    ADS  Article  Google Scholar 

  12. 12

    Schneider, N. M. et al. No sodium in the vapour plumes of Enceladus. Nature 10.1038/nature08070 (this issue)

  13. 13

    Srama, R. et al. The Cassini cosmic dust analyzer. Space Sci. Rev. 114, 465–518 (2004)

    ADS  CAS  Article  Google Scholar 

  14. 14

    Hillier, J. K. et al. The composition of Saturn's E ring. Mon. Not. R. Astron. Soc. 388, 1588–1596 (2007)

    ADS  Article  Google Scholar 

  15. 15

    Nimmo, F., Spencer, J. R., Papparlado, R. T. & Mullen, M. E. Shear heating as the origin of the plumes and heat flux on Enceladus. Nature 447, 289–291 (2007)

    ADS  CAS  Article  Google Scholar 

  16. 16

    Kieffer, S. W. et al. A clathrate reservoir hypothesis for Enceladus' south polar plume. Science 314, 1764–1766 (2006)

    ADS  CAS  Article  Google Scholar 

  17. 17

    Steinbach, C. & Buck, U. Reaction and solvation of sodium in hydrogen bonded solvent clusters. Phys. Chem. Chem. Phys. 7, 986–990 (2005)

    CAS  Article  Google Scholar 

  18. 18

    Postberg, F. et al. Discriminating contamination from particle components in spectra of Cassini’s dust detector CDA. Planet. Space Sci. (in the press)

  19. 19

    Charvat, A. & Abel, B. How to make big molecules fly out of liquid water: applications, features and physics of laser assisted liquid phase dispersion mass spectrometry. Phys. Chem. Chem. Phys. 9, 3335–3360 (2007)

    CAS  Article  Google Scholar 

  20. 20

    Frohn, A. & Roth, N. Dynamics of Droplets 245–260 (Springer, 2000)

    Google Scholar 

  21. 21

    Harder, H. Über das Kalium-Natrium-Verhältnis in Gewässern und die Tonmineralbildung. Naturwissenschaften 54, 613 (1967)

    ADS  CAS  Article  Google Scholar 

  22. 22

    Kempe, S. & Kazmierczak, J. Biogenesis and early life on Earth and Europa: favoured by an alkaline ocean? Astrobiology 2, 123–130 (2002)

    ADS  CAS  Article  Google Scholar 

  23. 23

    McKay, C. P., Porco, C. C., Altheide, T., Davis, W. L. & Kral, T. A. The possible origin and persistence of life on Enceladus and detection of biomarkers in the plume. Astrobiology 8, 909–919 (2008)

    ADS  CAS  Article  Google Scholar 

  24. 24

    Spitale, J. N. & Porco, C. C. Association of jets on Enceladus with the warmest regions on its south-polar fractures. Nature 449, 695–697 (2007)

    ADS  CAS  Article  Google Scholar 

  25. 25

    Dzidic, I. & Kebarle, P. Hydration of the alkali ions in the gas phase. J. Phys. Chem. 74, 1466–1474 (1969)

    ADS  Article  Google Scholar 

  26. 26

    Schulz, C. P., Haugstätter, R., Tittes, H. U. & Hertel, I. V. Free sodium-water clusters. Phys. Rev. Lett. 57, 1703–1706 (1986)

    ADS  CAS  Article  Google Scholar 

  27. 27

    Buck, U. & Steinbach, C. Formation of sodium hydroxide in multiple sodium-water cluster collisions. J. Phys. Chem. A 102, 7333–7336 (1998)

    CAS  Article  Google Scholar 

  28. 28

    Kempf, S., Beckmann, U. & Schmidt, J. How the Enceladus dust plumes form Saturn’s E ring. Icarus (submitted)

Download references


We thank U. Beckmann, M. Burger, M. Burton, M. Gellert, E. Grün, J. K. Hillier, N. Schneider, F. Spahn, and M. Zolotov for discussions. We acknowledge the efforts of the Cassini team and JPL. The work has been supported by the DLR, the DFG and the Frontier programme of the University of Heidelberg.

Author information



Corresponding author

Correspondence to F. Postberg.

Supplementary information

Supplementary Information

This file contains Supplementary Methods and Data, Supplementary Notes, Supplementary Table S1, Supplementary Figures S1-S4 with Legends and Supplementary References. (PDF 1011 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Postberg, F., Kempf, S., Schmidt, J. et al. Sodium salts in E-ring ice grains from an ocean below the surface of Enceladus. Nature 459, 1098–1101 (2009).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.