Radiation-pressure mixing of large dust grains in protoplanetary disks


Dusty disks around young stars are formed out of interstellar dust that consists of amorphous, submicrometre grains. Yet the grains found in comets1 and meteorites2, and traced in the spectra of young stars3, include large crystalline grains that must have undergone annealing or condensation at temperatures in excess of 1,000 K, even though they are mixed with surrounding material that never experienced temperatures as high as that4. This prompted theories of large-scale mixing capable of transporting thermally altered grains from the inner, hot part of accretion disks to outer, colder disk regions5,6,7, but all have assumptions that may be problematic8,9,10,11,12. Here I report that infrared radiation arising from the dusty disk can loft grains bigger than one micrometre out of the inner disk, whereupon they are pushed outwards by stellar radiation pressure while gliding above the disk. Grains re-enter the disk at radii where it is too cold to produce sufficient infrared radiation-pressure support for a given grain size and solid density. Properties of the observed disks suggest that this process might be active in almost all young stellar objects and young brown dwarfs.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Geometry of non-radial radiation pressure.
Figure 2: Trajectory of dust grains under the influence of stellar gravity, gas drag and non-radial radiation pressure.
Figure 3: Estimated strength of diffuse radiation pressure along the disk surface, indicating how far grains can travel.


  1. 1

    Brownlee, D. et al. Comet 81P/Wild 2 under a microscope. Science 314, 1711–1716 (2006)

    CAS  Article  ADS  Google Scholar 

  2. 2

    Wooden, D. H., Harker, D. E. & Brearley, A. J. in Chondrites and the Protoplanetary Disk (eds Krot, A. N., Scott, E. R. D. & Reipurth, B.) 774–808 (ASP Conference Series Vol. 341, 2005)

    Google Scholar 

  3. 3

    van Boekel, R. et al. The building blocks of planets within the ‘terrestrial’ region of protoplanetary disks. Nature 432, 479–482 (2004)

    CAS  Article  ADS  Google Scholar 

  4. 4

    Hill, H. G. M., Grady, C. A., Nuth, J. A., Hallenbeck, S. L. & Sitko, M. L. Constraints on nebular dynamics and chemistry based on observations of annealed magnesium silicate grains in comets and in disks surrounding Herbig Ae/Be stars. Proc. Natl Acad. Sci. USA 98, 2182–2187 (2001)

    CAS  Article  ADS  Google Scholar 

  5. 5

    Shu, F. H., Shang, H. & Lee, T. Toward an astrophysical theory of chondrites. Science 271, 1545–1552 (1996)

    CAS  Article  ADS  Google Scholar 

  6. 6

    Ciesla, F. J. Outward transport of high-temperature materials around the midplane of the solar nebula. Science 318, 613–615 (2007)

    CAS  Article  ADS  Google Scholar 

  7. 7

    Boss, A. P. Mixing in the solar nebula: Implications for isotopic heterogeneity and large-scale transport of refractory grains. Earth Planet. Sci. Lett. 268, 102–109 (2008)

    CAS  Article  ADS  Google Scholar 

  8. 8

    Klahr, H., Różyczka, M., Dziourkevitch, N., Wünsch, R. & Johansen, A. in Planet Formation (eds Klahr, H. & Brandner, W.) 42–63 (Cambridge Univ. Press, 2006)

    Google Scholar 

  9. 9

    Hubickyj, O. in Planet Formation (eds Klahr, H. & Brandner, W.) 163–178 (Cambridge Univ. Press, 2006)

    Google Scholar 

  10. 10

    Matsumura, S. & Pudritz, R. E. Dead zones and extrasolar planetary properties. Mon. Not. R. Astron. Soc. 365, 572–584 (2006)

    CAS  Article  ADS  Google Scholar 

  11. 11

    Shang, H., Li, Z.-Y. & Hirano, N. in Protostars and Planets V (eds Reipurth, B., Jewitt, D. & Keil, K.) 261–276 (Univ. Arizona Press, 2007)

    Google Scholar 

  12. 12

    Boss, A. P. Evolution of the solar nebula. VII. Formation and survival of protoplanets formed by disk instability. Astrophys. J. 629, 535–548 (2005)

    Article  ADS  Google Scholar 

  13. 13

    Takeuchi, T. & Lin, D. N. C. Surface outflow in optically thick dust disks by radiation pressure. Astrophys. J. 593, 524–533 (2003)

    Article  ADS  Google Scholar 

  14. 14

    Vinković, D. Temperature inversion on the surface of externally heated optically thick multigrain dust clouds. Astrophys. J. 651, 906–913 (2006)

    Article  ADS  Google Scholar 

  15. 15

    Millan-Gabet, R. et al. in Protostars and Planets V (eds Reipurth, B., Jewitt, D. & Keil, K.) 539–554 (Univ. Arizona Press, 2007)

    Google Scholar 

  16. 16

    Vinković, D. & Jurkić, T. Relation between the luminosity of young stellar objects and their circumstellar environment. Astrophys. J. 658, 462–479 (2007)

    Article  ADS  Google Scholar 

  17. 17

    Isella, A. & Natta, A. The shape of the inner rim in proto-planetary disks. Astron. Astrophys. 438, 899–907 (2005)

    Article  ADS  Google Scholar 

  18. 18

    Alexander, R. From discs to planetesimals: Evolution of gas and dust discs. N. Astron. Rev. 52, 60–77 (2008)

    Article  ADS  Google Scholar 

  19. 19

    Chiang, E. I. & Goldreich, P. Spectral energy distributions of T Tauri stars with passive circumstellar disks. Astrophys. J. 490, 368–376 (1997)

    Article  ADS  Google Scholar 

  20. 20

    Fujiwara, D. & Watanabe, S. Protostars and Planets V, Proceedings of the Conference 8237 (Lunar and Planetary Institute, 2005)

    Google Scholar 

  21. 21

    Voshchinnikov, N. V. & Henning, T. Is the silicate emission feature only influenced by grain size? Astron. Astrophys. 483, L9–L12 (2008)

    Article  ADS  Google Scholar 

  22. 22

    Pinte, C. et al. Probing dust grain evolution in IM Lupi's circumstellar disc. Multi-wavelength observations and modelling of the dust disc. Astron. Astrophys. 489, 633–650 (2008)

    CAS  Article  ADS  Google Scholar 

  23. 23

    Jones, R. H., Lee, T., Connolly, H. C., Love, S. G. & Shang, H. in Protostars and Planets IV (eds Mannings, V., Boss, A. P. & Russell, S. S.) 927–962 (Univ. Arizona Press, 2000)

    Google Scholar 

  24. 24

    Wuchterl, G. & Tscharnuter, W. M. From clouds to stars. Protostellar collapse and the evolution to the pre-main sequence I. Equations and evolution in the Hertzsprung-Russell diagram. Astron. Astrophys. 398, 1081–1090 (2003)

    Article  ADS  Google Scholar 

  25. 25

    van Boekel, R. et al. A 10 μm spectroscopic survey of Herbig Ae star disks: Grain growth and crystallization. Astron. Astrophys. 437, 189–208 (2005)

    CAS  Article  ADS  Google Scholar 

  26. 26

    Sargent, B. et al. Dust processing in disks around T Tauri stars. Astrophys. J. 645, 395–415 (2006)

    CAS  Article  ADS  Google Scholar 

  27. 27

    Watson, D. M. et al. Crystalline silicates and dust processing in the protoplanetary disks of the Taurus young cluster. Astrophys. J. Suppl. Ser. 180, 84–101 (2009)

    CAS  Article  ADS  Google Scholar 

  28. 28

    Schegerer, A. A., Wolf, S., Ratzka, Th. & Leinert, Ch. The T Tauri star RY Tauri as a case study of the inner regions of circumstellar dust disks. Astron. Astrophys. 478, 779–793 (2008)

    CAS  Article  ADS  Google Scholar 

  29. 29

    Dorschner, J., Begemann, B., Henning, T., Jaeger, C. & Mutschke, H. Steps toward interstellar silicate mineralogy. II. Study of Mg-Fe-silicate glasses of variable composition. Astron. Astrophys. 300, 503–520 (1995)

    CAS  ADS  Google Scholar 

  30. 30

    Jaeger, C. et al. Steps toward interstellar silicate mineralogy. IV. The crystalline revolution. Astron. Astrophys. 339, 904–916 (1998)

    CAS  ADS  Google Scholar 

Download references


I thank the Institute for Advanced Study in Princeton and the University Computing Center SRCE in Zagreb for time on their computer clusters.

Author information



Corresponding author

Correspondence to Dejan Vinković.

Supplementary information

Supplementary Information

This file contains Supplementary Data and Supplementary References. (PDF 152 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Vinković, D. Radiation-pressure mixing of large dust grains in protoplanetary disks. Nature 459, 227–229 (2009). https://doi.org/10.1038/nature08032

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing