Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A low-energy core-collapse supernova without a hydrogen envelope


The final fate of massive stars depends on many factors. Theory suggests that some with initial masses greater than 25 to 30 solar masses end up as Wolf–Rayet stars, which are deficient in hydrogen in their outer layers because of mass loss through strong stellar winds. The most massive of these stars have cores which may form a black hole and theory predicts that the resulting explosion of some of them produces ejecta of low kinetic energy, a faint optical luminosity and a small mass fraction of radioactive nickel1,2,3. An alternative origin for low-energy supernovae is the collapse of the oxygen–neon core of a star of 7–9 solar masses4,5. No weak, hydrogen-deficient, core-collapse supernovae have hitherto been seen. Here we report that SN 2008ha is a faint hydrogen-poor supernova. We propose that other similar events have been observed but have been misclassified as peculiar thermonuclear supernovae (sometimes labelled SN 2002cx-like events6). This discovery could link these faint supernovae to some long-duration γ-ray bursts, because extremely faint, hydrogen-stripped core-collapse supernovae have been proposed to produce such long γ-ray bursts, the afterglows of which do not show evidence of associated supernovae7,8,9.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Spectral evolution of SN 2008ha.
Figure 2: Comparison of spectra of SN 2008ha with those of other supernovae.
Figure 3: Pseudo-bolometric and absolute R-band light curves of SN 2008ha.
Figure 4: Spectra of SN 2008ha and SN 2002cx-like events.


  1. 1

    MacFadyen, A. I., Woosley, S. E. & Heger, A. Supernovae, jets, and collapsars. Astrophys. J. 550, 410–425 (2001)

    ADS  Article  Google Scholar 

  2. 2

    Heger, A. et al. How massive single stars end their life. Astrophys. J. 591, 288–300 (2003)

    ADS  Article  Google Scholar 

  3. 3

    Fryer, C. L., Young, P. A. & Hungerford, A. L. Explosive nucleosynthesis from gamma-ray burst and hypernova progenitors: direct collapse versus fallback. Astrophys. J. 650, 1028–1047 (2006)

    ADS  CAS  Article  Google Scholar 

  4. 4

    Nomoto, K. Evolution of 8–10 solar mass stars toward electron capture supernovae. I. Formation of electron-degenerate O + Ne + Mg cores. Astrophys. J. 277, 791–805 (1984)

    ADS  CAS  Article  Google Scholar 

  5. 5

    Kitaura, F. S., Janka, H.-T. h. & Hillebrandt, W. Explosions of O-Ne-Mg cores, the Crab supernova, and subluminous type II-P supernovae. Astron. Astrophys. 450, 345–350 (2006)

    ADS  CAS  Article  Google Scholar 

  6. 6

    Li, W. et al. SN 2002cx: The most peculiar known type Ia supernova. Publ. Astron. Soc. Pacif. 115, 453–473 (2003)

    ADS  Article  Google Scholar 

  7. 7

    Della Valle, M. et al. An enigmatic long-lasting γ-ray burst not accompanied by a bright supernova. Nature 444, 1050–1052 (2006)

    ADS  CAS  Article  Google Scholar 

  8. 8

    Gal-Yam, A. et al. A novel explosive process is required for the γ-ray burst GRB 060614. Nature 444, 1053–1055 (2006)

    ADS  CAS  Article  Google Scholar 

  9. 9

    Fynbo, J. P. U. et al. No supernovae associated with two long-duration γ-ray bursts. Nature 444, 1047–1049 (2006)

    ADS  CAS  Article  Google Scholar 

  10. 10

    Puckett, T., Moore, C., Newton, J. & Orff., T. Supernova 2008ha in UGC 12682. Central Bureau Electr. Telegr. 1567, (2008)

  11. 11

    Foley, R. J. et al. Supernova 2008ha in UGC 12682. Central Bureau Electr. Telegr. 1576, (2008)

  12. 12

    Pastorello, A. et al. Low-luminosity type II supernovae: spectroscopic and photometric evolution. Mon. Not. R. Astron. Soc. 347, 74–94 (2004)

    ADS  CAS  Article  Google Scholar 

  13. 13

    Valenti, S. et al. The carbon-rich type Ic SN 2007gr: the photospheric phase. Astrophys. J. 673, L155–L158 (2008)

    ADS  CAS  Article  Google Scholar 

  14. 14

    Patat, F. et al. The metamorphosis of SN 1998bw. Astrophys. J. 555, 900–917 (2001)

    ADS  CAS  Article  Google Scholar 

  15. 15

    Pastorello, A. et al. SN 2005cs in M51. II. Complete evolution in the optical and the near-infrared. Mon. Not. R. Astron. Soc. 394, 2266–2282 (2009)

    ADS  CAS  Article  Google Scholar 

  16. 16

    Arnett, W. D. Type I supernovae. I—Analytic solutions for the early part of the light curve. Astrophys. J. 253, 785–797 (1982)

    ADS  CAS  Article  Google Scholar 

  17. 17

    Mazzali, P. A., Röpke, F. K., Benetti, S. & Hillebrandt, W. A common explosion mechanism for type Ia supernovae. Science 315, 825–828 (2007)

    ADS  CAS  Article  Google Scholar 

  18. 18

    Mazzali, P. A. et al. Can differences in the nickel abundance in Chandrasekhar-mass models explain the relation between the brightness and decline rate of normal type IA supernovae? Astrophys. J. 547, 988–994 (2001)

    ADS  CAS  Article  Google Scholar 

  19. 19

    Branch, D. et al. Reading the spectra of the most peculiar type Ia supernova 2002cx. Publ. Astron. Soc. Pacif. 116, 903–908 (2004)

    ADS  Article  Google Scholar 

  20. 20

    Jha, S. et al. Late-time spectroscopy of SN 2002cx: the prototype of a new subclass of type Ia supernovae. Astron. J. 132, 189–196 (2006)

    ADS  CAS  Article  Google Scholar 

  21. 21

    Phillips, M. M. et al. The peculiar SN 2005hk: do some type Ia supernovae explode as deflagrations? Publ. Astron. Soc. Pacif. 119, 360–387 (2007)

    ADS  Article  Google Scholar 

  22. 22

    Sahu, D. K. et al. The evolution of the peculiar type Ia supernova SN 2005hk over 400 days. Astrophys. J. 680, 580–592 (2008)

    ADS  CAS  Article  Google Scholar 

  23. 23

    Gamezo, V. N., Khokhlov, A. M. & Oran, E. S. Deflagrations and detonations in thermonuclear supernovae. Phys. Rev. Lett. 92, 211102 (2004)

    ADS  Article  Google Scholar 

  24. 24

    Phillips, M. M. The absolute magnitudes of type IA supernovae. Astrophys. J. 413, L105–L108 (1993)

    ADS  Article  Google Scholar 

  25. 25

    Benetti, S. et al. The fading of supernova 1997D. Mon. Not. R. Astron. Soc. 322, 361–368 (2001)

    ADS  CAS  Article  Google Scholar 

  26. 26

    Nomoto, K., Thielemann, F. K. & Yokoi, K. Accreting white dwarf models of type I supernovae. III—Carbon deflagration supernovae. Astrophys. J. 286, 644–658 (1984)

    ADS  CAS  Article  Google Scholar 

  27. 27

    Filippenko, A. V. et al. Supernova 2007J in UGC 1778. Central Bureau Electr. Telegr. 926, 1 (2007)

    ADS  Google Scholar 

  28. 28

    Filippenko, A. V. et al. Supernova 2007J in UGC 1778. Central Bureau Electr. Telegr. 817, 1 (2007)

    ADS  Google Scholar 

  29. 29

    Filippenko, A. et al. The peculiar type IA SN 1991T—Detonation of a white dwarf? Astrophys. J. 384, L15–L18 (1992)

    ADS  CAS  Article  Google Scholar 

  30. 30

    Matheson, T. et al. Photometry and spectroscopy of GRB 030329 and its associated supernova 2003dh: the first two months. Astrophys. J. 599, 394–407 (2003)

    ADS  CAS  Article  Google Scholar 

Download references


This work, conducted as part of the European Science Foundation EURYI Awards scheme, was supported by funds from the Participating Organisations of EURYI and the EC Sixth Framework Programme. The work of S.B., E.C. and M.T. was supported by grants of the PRIN of Italian Ministry of University and Science Research. This paper is based on observations collected at TNG, NOT, LT (La Palma Canary Island, Spain), at Ekar (Asiago Observatory, Italy), at the Begues Observatory and Arguines Observatory telescopes (Barcelona and Segorbe, Spain), at the Taurus Hill Observatory (Varkaus, Finland), at the Calar Alto Observatory (Spain) and at the ESO-UT2 (Paranal, Chile). Our analysis included data from the SUSPECT Archive ( This manuscript made use of information contained in the Bright Supernova web pages (D. Bishop), as part of the Rochester Academy of Sciences.

Author information



Corresponding author

Correspondence to S. Valenti.

Supplementary information

Supplementary Information

This file contains Supplementary Methods and Data, Supplementary Tables 1-2, Supplementary Figures 1-4 with Legends and Supplementary References. (PDF 1636 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Valenti, S., Pastorello, A., Cappellaro, E. et al. A low-energy core-collapse supernova without a hydrogen envelope. Nature 459, 674–677 (2009).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links