Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Preserving noble gases in a convecting mantle

Abstract

High 3He/4He ratios sampled at many ocean islands are usually attributed to an essentially undegassed lower-mantle reservoir with high 3He concentrations1,2,3,4. A large and mostly undegassed mantle reservoir is also required to balance the Earth’s 40Ar budget, because only half of the 40Ar produced from the radioactive decay of 40K is accounted for by the atmosphere and upper mantle5. However, geophysical6,7 and geochemical observations8 suggest slab subduction into the lower mantle, implying that most or all of Earth’s mantle should have been processed by partial melting beneath mid-ocean ridges and hotspot volcanoes. This should have left noble gases in both the upper and the lower mantle extensively outgassed, contrary to expectations from 3He/4He ratios and the Earth’s 40Ar budget. Here we suggest a simple solution: recycling and mixing of noble-gas-depleted slabs dilutes the concentrations of noble gases in the mantle, thereby decreasing the rate of mantle degassing and leaving significant amounts of noble gases in the processed mantle. As a result, even when the mass flux across the 660-km seismic discontinuity is equivalent to approximately one lower-mantle mass over the Earth’s history, high 3He contents, high 3He/4He ratios and 40Ar concentrations high enough to satisfy the 40Ar mass balance of the Earth can be preserved in the lower mantle. The differences in 3He/4He ratios between mid-ocean-ridge basalts and ocean island basalts, as well as high concentrations of 3He and 40Ar in the mantle source of ocean island basalts4, can be explained within the framework of different processing rates for the upper and the lower mantle. Hence, to preserve primitive noble gas signatures, we find no need for hidden reservoirs or convective isolation of the lower mantle for any length of time.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Conceptual model of mantle degassing.
Figure 2: Primordial noble gas concentration in the processed mantle reservoir.
Figure 3: Mantle processing rate.
Figure 4: Results from geochemical reservoir modelling.

Similar content being viewed by others

References

  1. Kurz, M. D., Jenkins, W. J. & Hart, S. R. Helium isotopic systematics of oceanic islands and mantle heterogeneity. Nature 297, 43–47 (1982)

    Article  CAS  ADS  Google Scholar 

  2. Allègre, C. J., Staudacher, T. & Sarda, P. Rare-gas systematics: formation of the atmosphere, evolution and structure of the Earth’s mantle. Earth Planet. Sci. Lett. 81, 127–150 (1987)

    Article  ADS  Google Scholar 

  3. Harper, C. L. & Jacobsen, S. B. Noble gases and Earth’s accretion. Science 273, 1814–1818 (1996)

    Article  CAS  ADS  Google Scholar 

  4. Gonnermann, H. M. & Mukhopadhyay, S. Non-equilibrium degassing and a primordial source for helium in ocean-island volcanism. Nature 449, 1037–1040 (2007)

    Article  CAS  ADS  Google Scholar 

  5. Allègre, C. J., Hofmann, A. & O’Nions, K. The argon constraints on mantle structure. Geophys. Res. Lett. 23, 3555–3557 (1996)

    Article  ADS  Google Scholar 

  6. Grand, S. P., van der Hilst, R. D. & Widiyantoro, S. Global seismic tomography: a snapshot of convection in the Earth. GSA Today 7, 1–7 (1997)

    Google Scholar 

  7. van der Hilst, R. D., Widiyantoro, S. & Engdahl, E. R. Evidence for deep mantle circulation from global tomography. Nature 386, 578–584 (1997)

    Article  CAS  ADS  Google Scholar 

  8. Hofmann, A. W., Jochum, K. P., Seufert, M. & White, W. M. Nb and Pb in oceanic basalts - new constraints on mantle evolution. Earth Planet. Sci. Lett. 79, 33–45 (1986)

    Article  CAS  ADS  Google Scholar 

  9. O’Nions, R. K. & Tolstikhin, I. N. Limits on the mass flux between lower and upper mantle and stability of layering. Earth Planet. Sci. Lett. 139, 213–222 (1996)

    Article  ADS  Google Scholar 

  10. Albarède, F. Time-dependent models of U-Th-He and K-Ar evolution and the layering of mantle convection. Chem. Geol. 145, 413–429 (1998)

    Article  ADS  Google Scholar 

  11. Parman, S. W. Helium isotopic evidence for episodic mantle melting and crustal growth. Nature 446, 900–903 (2007)

    Article  CAS  ADS  Google Scholar 

  12. Heber, V. S., Brooker, R. A., Kelley, S. P. & wood, B. J. Crystal-melt partitioning of noble gases (helium, neon, argon, krypton, and xenon) for olivine and clinopyroxene. Geochim. Cosmochim. Acta 71, 1041–1061 (2007)

    Article  CAS  ADS  Google Scholar 

  13. Class, C. & Goldstein, S. L. Evolution of helium isotopes in the Earth’s mantle. Nature 436, 1107–1112 (2005)

    Article  CAS  ADS  Google Scholar 

  14. Staudacher, T. & Allègre, C. J. Recycling of oceanic-crust and sediments—the noble-gas subduction barrier. Earth Planet. Sci. Lett. 89, 173–183 (1988)

    Article  CAS  ADS  Google Scholar 

  15. Allègre, C. J. & Turcotte, D. L. Implications of a two-component marble-cake mantle. Nature 323, 123–127 (1986)

    Article  ADS  Google Scholar 

  16. Coltice, N. & Schmalzl, J. Mixing times in the mantle of the early Earth derived from 2-D and 3-D numerical simulations of convection. Geophys. Res. Lett. 33 10.1029/2006GL027707 (2006)

  17. Albarede, F. Rogue mantle helium and neon. Science 319, 943–945 (2008)

    Article  CAS  ADS  Google Scholar 

  18. Hart, S. R., Hauri, E. H., Oschmann, L. A. & Whitehead, J. A. Mantle plumes and entrainment - isotopic evidence. Science 256, 517–520 (1992)

    Article  CAS  ADS  Google Scholar 

  19. Jacobsen, S. B. & Wasserburg, G. J. Mean age of mantle and crustal reservoirs. J. Geophys. Res. 84, 7411–7427 (1979)

    Article  CAS  ADS  Google Scholar 

  20. Albarède, F. Radiogenic ingrowth in systems with multiple reservoirs: applications to the differentiation of the mantle-crust system. Earth Planet. Sci. Lett. 189, 59–73 (2001)

    Article  ADS  Google Scholar 

  21. Kellogg, J. B., Jacobsen, S. B. & O’Connell, R. J. Modeling the distribution of isotopic ratios in geochemical reservoirs. Earth Planet. Sci. Lett. 204, 183–202 (2002)

    Article  CAS  ADS  Google Scholar 

  22. Fukao, Y., Widiyantoro, S. & Obayashi, M. Stagnant slabs in the upper and lower mantle transition region. Rev. Geophys. 39, 291–323 (2001)

    Article  ADS  Google Scholar 

  23. Gu, Y. J., Dziewoński, A. M., Su, W. & Ekström, G. Models of the mantle shear velocity and discontinuities in the pattern of lateral heterogeneities. J. Geophys. Res. 106, 11169–11199 (2001)

    Article  ADS  Google Scholar 

  24. Kustowski, B., Ekström, G. & Dziewoński, A. M. Anisotropic shear-wave velocity structure of the Earth’s mantle: a global model. J. Geophys. Res. 113 10.1029/2007JB005169 (2008)

  25. O’Connell, R. J. & Hager, B. H. Ridge migration and mantle differentiation. Eos 61, 373 (1980)

    Google Scholar 

  26. Porcelli, D. & Elliott, T. The evolution of He isotopes in the convecting mantle and the preservation of high 3He/4He ratios. Earth Planet. Sci. Lett. 269, 175–185 (2008)

    Article  CAS  ADS  Google Scholar 

  27. Kellogg, L. H. & Wasserburg, G. J. The role of plumes in mantle helium fluxes. Earth Planet. Sci. Lett. 99, 276–289 (1990)

    Article  CAS  ADS  Google Scholar 

  28. Graham, D. W. in Noble Gases in Geochemistry and Cosmochemistry (eds Porcelli, D., Ballentine, C. & Wieler, R.) 247–317 (Rev. Mineral. Geochem. Vol. 47, Mineralogical Society of America, 2002)

    Book  Google Scholar 

  29. Workman, R. K. & Hart, S. R. Major and trace element composition of the depleted MORB mantle (DMM). Earth Planet. Sci. Lett. 231, 53–72 (2005)

    Article  CAS  ADS  Google Scholar 

  30. Boyet, M. & Carlson, R. W. A new geochemical model for the Earth’s mantle inferred from 146Sm–142Nd systematics. Earth Planet. Sci. Lett. 250, 254–268 (2006)

    Article  CAS  ADS  Google Scholar 

  31. Farley, K. A., Maierreimer, E., Schlosser, P. & Broecker, W. S. Constraints on mantle 3He fluxes and deep-sea circulation from an oceanic general-circulation model. J. Geophys. Res. 100, 3829–3839 (1995)

    Article  CAS  ADS  Google Scholar 

Download references

Acknowledgements

We thank R. O’Connell, A. Dziewonski, C. Langmuir, E. Hellebrand for discussions and D. Graham for a thorough review of the manuscript. H.M.G. was in part supported by the University of Hawaii, SOEST Young Investigator programme. S.M. was in part supported by US National Science Foundation grant EAR 0509721.

Author Contributions H.M.G. and S.M. together developed the ideas presented here. H.M.G. developed the geochemical reservoir model and performed the numerical modelling. H.M.G. and S.M. analysed the results and co-wrote the paper.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Helge M. Gonnermann or Sujoy Mukhopadhyay.

Supplementary information

Supplementary Information

This file contains Supplementary Data, Supplementary Figures S1-S5 with Legends, Supplementary Table 1 and Supplementary References. (PDF 435 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gonnermann, H., Mukhopadhyay, S. Preserving noble gases in a convecting mantle. Nature 459, 560–563 (2009). https://doi.org/10.1038/nature08018

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature08018

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing