Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Thermal vestige of the zero-temperature jamming transition


When the packing fraction is increased sufficiently, loose particulates jam to form a rigid solid in which the constituents are no longer free to move. In typical granular materials and foams, the thermal energy is too small to produce structural rearrangements. In this zero-temperature (T = 0) limit, multiple diverging1,2,3,4,5,6,7,8 and vanishing2,9,10 length scales characterize the approach to a sharp jamming transition. However, because thermal motion becomes relevant when the particles are small enough, it is imperative to understand how these length scales evolve as the temperature is increased. Here we used both colloidal experiments and computer simulations to progress beyond the zero-temperature limit to track one of the key parameters—the overlap distance between neighbouring particles—which vanishes at the T = 0 jamming transition. We find that this structural feature retains a vestige of its T = 0 behaviour and evolves in an unusual manner, which has masked its appearance until now. It is evident as a function of packing fraction at fixed temperature, but not as a function of temperature at fixed packing fraction or pressure. Our results conclusively demonstrate that length scales associated with the T = 0 jamming transition persist in thermal systems, not only in simulations but also in laboratory experiments.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic jamming phase diagram.
Figure 2: Pair-correlation function g(r ) for the large particles at all experimental packing fractions.
Figure 3: Peak value of g(r), g1, measured from simulations.
Figure 4: Dynamics approaching the structural maximum.


  1. O'Hern, C. S., Langer, S. A., Liu, A. J. & Nagel, S. R. Random packings of frictionless particles. Phys. Rev. Lett. 88, 075507 (2002)

    Article  ADS  Google Scholar 

  2. O'Hern, C. S., Silbert, L. E., Liu, A. J. & Nagel, S. R. Jamming at zero temperature and zero applied stress: The epitome of disorder. Phys. Rev. E 68, 011306 (2003)

    Article  ADS  Google Scholar 

  3. Drocco, J. A., Hastings, M. B., Reichhardt, C. J. O. & Reichhardt, C. Multiscaling at point J: Jamming is a critical phenomenon. Phys. Rev. Lett. 95, 088001 (2005)

    Article  ADS  CAS  Google Scholar 

  4. Ellenbroek, W. G., Somfai, E., van Hecke, M. & van Saarloos, W. Critical scaling in linear response of frictionless granular packings near jamming. Phys. Rev. Lett. 97, 258001 (2006)

    Article  ADS  Google Scholar 

  5. Olsson, P. & Teitel, S. Critical scaling of shear viscosity at the jamming transition. Phys. Rev. Lett. 99, 178001 (2007)

    Article  ADS  Google Scholar 

  6. Silbert, L. E., Liu, A. J. & Nagel, S. R. Vibrations and diverging length scales near the unjamming transition. Phys. Rev. Lett. 95, 098301 (2005)

    Article  ADS  Google Scholar 

  7. Wyart, M., Silbert, L. E., Nagel, S. R. & Witten, T. A. Effects of compression on the vibrational modes of marginally jammed solids. Phys. Rev. E 72, 051306 (2005)

    Article  ADS  Google Scholar 

  8. Xu, N., Vitelli, V., Wyart, M., Liu, A. J. & Nagel, S. R. Energy transport in jammed sphere packings. Phys. Rev. Lett. 102, 038001 (2009)

    Article  ADS  Google Scholar 

  9. Silbert, L. E., Liu, A. J. & Nagel, S. R. Structural signatures of the unjamming transition at zero temperature. Phys. Rev. E 73, 041304 (2006)

    Article  ADS  Google Scholar 

  10. Donev, A., Torquato, S. & Stillinger, F. H. Pair correlation function characteristics of nearly jammed disordered and ordered hard-sphere packings. Phys. Rev. E 71, 011105 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  11. Liu, A. J. & Nagel, S. R. Nonlinear dynamics—Jamming is not just cool any more. Nature 396, 21–22 (1998)

    Article  ADS  CAS  Google Scholar 

  12. Trappe, V., Prasad, V., Cipelletti, L., Segre, P. N. & Weitz, D. A. Jamming phase diagram for attractive particles. Nature 411, 772–775 (2001)

    Article  ADS  CAS  Google Scholar 

  13. Durian, D. J. Foam mechanics at the bubble scale. Phys. Rev. Lett. 75, 4780–4783 (1995)

    Article  ADS  CAS  Google Scholar 

  14. Pelton, R. Temperature-sensitive aqueous microgels. Adv. Colloid Interf. Sci. 85, 1–33 (2000)

    Article  ADS  CAS  Google Scholar 

  15. Saunders, B. R. & Vincent, B. Microgel particles as model colloids: theory, properties and applications. Adv. Colloid Interf. Sci. 80, 1–25 (1999)

    Article  CAS  Google Scholar 

  16. Senff, H. & Richtering, W. Temperature sensitive microgel suspensions: Colloidal phase behavior and rheology of soft spheres. J. Chem. Phys. 111, 1705–1711 (1999)

    Article  ADS  CAS  Google Scholar 

  17. Wu, J. Z., Zhou, B. & Hu, Z. B. Phase behavior of thermally responsive microgel colloids. Phys. Rev. Lett. 90, 048304 (2003)

    Article  ADS  Google Scholar 

  18. Lyon, L. A. et al. Microgel colloidal crystals. J. Phys. Chem. B 108, 19099–19108 (2004)

    Article  CAS  Google Scholar 

  19. Alsayed, A. M., Islam, M. F., Zhang, J., Collings, P. J. & Yodh, A. G. Premelting at defects within bulk colloidal crystals. Science 309, 1207–1210 (2005)

    Article  ADS  CAS  Google Scholar 

  20. Han, Y., Ha, N. Y., Alsayed, A. M. & Yodh, A. G. Melting of two-dimensional tunable-diameter colloidal crystals. Phys. Rev. E 77, 041406 (2008)

    Article  ADS  CAS  Google Scholar 

  21. Han, Y. L. et al. Geometric frustration in buckled colloidal monolayers. Nature 456, 898–903 (2008)

    Article  ADS  CAS  Google Scholar 

  22. Kob, W. & Andersen, H. C. Testing mode-coupling theory for a supercooled binary Lennard-Jones mixture—The Van Hove correlation-function. Phys. Rev. E 51, 4626–4641 (1995)

    Article  ADS  CAS  Google Scholar 

  23. Perera, D. N. & Harrowell, P. Relaxation dynamics and their spatial distribution in a two-dimensional glass-forming mixture. J. Chem. Phys. 111, 5441–5454 (1999)

    Article  ADS  CAS  Google Scholar 

  24. Murray, C. A. & Grier, D. G. Video microscopy of monodisperse colloidal systems. Annu. Rev. Phys. Chem. 47, 421–462 (1996)

    Article  ADS  CAS  Google Scholar 

  25. Crocker, J. C. & Grier, D. G. Methods of digital video microscopy for colloidal studies. J. Colloid Interf. Sci. 179, 298–310 (1996)

    Article  ADS  CAS  Google Scholar 

  26. Kegel, W. K. & van Blaaderen, A. Direct observation of dynamical heterogeneities in colloidal hard-sphere suspensions. Science 287, 290–293 (2000)

    Article  ADS  CAS  Google Scholar 

  27. Weeks, E. R., Crocker, J. C., Levitt, A. C., Schofield, A. & Weitz, D. A. Three-dimensional direct imaging of structural relaxation near the colloidal glass transition. Science 287, 627–631 (2000)

    Article  ADS  CAS  Google Scholar 

  28. Abate, A. R. & Durian, D. J. Approach to jamming in an air-fluidized granular bed. Phys. Rev. E 74, 031308 (2006)

    Article  ADS  CAS  Google Scholar 

  29. Busse, L. E. & Nagel, S. R. Temperature-dependence of the structure factor of As2Se3 glass up to the glass-transition. Phys. Rev. Lett. 47, 1848–1851 (1981)

    Article  ADS  CAS  Google Scholar 

  30. Lacevic, N., Starr, F. W., Schroder, T. B., Novikov, V. N. & Glotzer, S. C. Growing correlation length on cooling below the onset of caging in a simulated glass-forming liquid. Phys. Rev. E 66, 030101 (2002)

    Article  ADS  CAS  Google Scholar 

Download references


We thank T. Lubensky, D. Durian and K. Chen for discussions and a critical reading of the manuscript. We acknowledge the financial support of the Department of Energy and the National Science Foundation: DE-FG02-05ER46199 (A.J.L., N.X.), DE-FG02-03ER46088 (S.R.N., N.X.), the University of Chicago MRSEC DMR-0820054 (S.R.N., N.X.), DMR-080488 (A.G.Y.), and the PENN MRSEC DMR-0520020 (A.G.Y., A.J.L., Z.Z.). Z.Z. gratefully acknowledges partial support from Rhodia. Finally, we acknowledge the support of the Teraport computer cluster at the University of Chicago.

Author information

Authors and Affiliations


Corresponding authors

Correspondence to Zexin Zhang or Ning Xu.

Supplementary information

Supplementary Information

This file contains Supplementary Methods, a Supplementary Discussion, Supplementary References and Supplementary Figures S1-S6 with Legends. (PDF 971 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zhang, Z., Xu, N., Chen, D. et al. Thermal vestige of the zero-temperature jamming transition. Nature 459, 230–233 (2009).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing