Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Precise genome modification in the crop species Zea mays using zinc-finger nucleases

Abstract

Agricultural biotechnology is limited by the inefficiencies of conventional random mutagenesis and transgenesis. Because targeted genome modification in plants has been intractable1, plant trait engineering remains a laborious, time-consuming and unpredictable undertaking. Here we report a broadly applicable, versatile solution to this problem: the use of designed zinc-finger nucleases (ZFNs) that induce a double-stranded break at their target locus2. We describe the use of ZFNs to modify endogenous loci in plants of the crop species Zea mays. We show that simultaneous expression of ZFNs and delivery of a simple heterologous donor molecule leads to precise targeted addition of an herbicide-tolerance gene at the intended locus in a significant number of isolated events. ZFN-modified maize plants faithfully transmit these genetic changes to the next generation. Insertional disruption of one target locus, IPK1, results in both herbicide tolerance and the expected alteration of the inositol phosphate profile in developing seeds. ZFNs can be used in any plant species amenable to DNA delivery; our results therefore establish a new strategy for plant genetic manipulation in basic science and agricultural applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: ZFNs designed to target Z. mays IPK1 induce DSBs at the endogenous locus.
Figure 2: Targeted gene addition to IPK1 in maize.
Figure 3: ZFN-mediated gene disruption of Z. mays IPK1 is stable and heritable.

Similar content being viewed by others

References

  1. Puchta, H. Gene replacement by homologous recombination in plants. Plant Mol. Biol. 48, 173–182 (2002)

    Article  CAS  PubMed  Google Scholar 

  2. Carroll, D. Progress and prospects: zinc-finger nucleases as gene therapy agents. Gene Ther. 15, 1463–1468 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Iida, S. & Terada, R. Modification of endogenous natural genes by gene targeting in rice and other higher plants. Plant Mol. Biol. 59, 205–219 (2005)

    Article  CAS  PubMed  Google Scholar 

  4. Kim, Y. G., Cha, J. & Chandrasegaran, S. Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc. Natl Acad. Sci. USA 93, 1156–1160 (1996)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  5. Puchta, H. The repair of double-strand breaks in plants: mechanisms and consequences for genome evolution. J. Exp. Bot. 56, 1–14 (2005)

    Article  CAS  PubMed  Google Scholar 

  6. Jasin, M. Genetic manipulation of genomes with rare-cutting endonucleases. Trends Genet. 12, 224–228 (1996)

    Article  CAS  PubMed  Google Scholar 

  7. Bibikova, M. et al. Stimulation of homologous recombination through targeted cleavage by chimeric nucleases. Mol. Cell. Biol. 21, 289–297 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Porteus, M. H. & Baltimore, D. Chimeric nucleases stimulate gene targeting in human cells. Science 300, 763 (2003)

    Article  PubMed  Google Scholar 

  9. Wright, D. A. et al. High-frequency homologous recombination in plants mediated by zinc-finger nucleases. Plant J. 44, 693–705 (2005)

    Article  CAS  PubMed  Google Scholar 

  10. Cai, C. Q. et al. Targeted transgene integration in plant cells using designed zinc finger nucleases. Plant Mol. Biol. 69, 699–709 (2008)

    Article  PubMed  Google Scholar 

  11. Miller, J., McLachlan, A. D. & Klug, A. Repetitive zinc-binding domains in the protein transcription factor IIIA from Xenopus oocytes. EMBO J. 4, 1609–1614 (1985)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Pavletich, N. P. & Pabo, C. O. Zinc finger-DNA recognition: crystal structure of a Zif268-DNA complex at 2.1 Å. Science 252, 809–817 (1991)

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Isalan, M. & Choo, Y. Rapid, high-throughput engineering of sequence-specific zinc finger DNA-binding proteins. Methods Enzymol. 340, 593–609 (2001)

    Article  CAS  PubMed  Google Scholar 

  14. Pabo, C. O., Peisach, E. & Grant, R. A. Design and selection of novel Cys2his2 zinc finger proteins. Annu. Rev. Biochem. 70, 313–340 (2001)

    Article  CAS  PubMed  Google Scholar 

  15. Sun, Y. et al. Inositol 1,3,4,5,6-pentakisphosphate 2-kinase from maize: molecular and biochemical characterization. Plant Physiol. 144, 1278–1291 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Raboy, V. Seeds for a better future: ‘low phytate’ grains help to overcome malnutrition and reduce pollution. Trends Plant Sci. 6, 458–462 (2001)

    Article  CAS  PubMed  Google Scholar 

  17. Stevenson-Paulik, J. et al. Generation of phytate-free seeds in Arabidopsis through disruption of inositol polyphosphate kinases. Proc. Natl Acad. Sci. USA 102, 12612–12617 (2005)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  18. Raboy, V. myo-Inositol-1,2,3,4,5,6-hexakisphosphate. Phytochemistry 64, 1033–1043 (2003)

    Article  CAS  PubMed  Google Scholar 

  19. Urnov, F. D. et al. Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature 435, 646–651 (2005)

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Gordon-Kamm, W. J. et al. Transformation of maize cells and regeneration of fertile transgenic plants. Plant Cell 2, 603–618 (1990)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Frame, B. R. et al. Agrobacterium tumefaciens-mediated transformation of maize embryos using a standard binary vector system. Plant Physiol. 129, 13–22 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Doyon, Y. et al. Heritable targeted gene disruption in zebrafish using designed zinc-finger nucleases. Nature Biotechnol. 26, 702–708 (2008)

    Article  CAS  Google Scholar 

  23. Bibikova, M. et al. Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases. Genetics 161, 1169–1175 (2002)

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Lloyd, A. et al. Targeted mutagenesis using zinc-finger nucleases in Arabidopsis . Proc. Natl Acad. Sci. USA 102, 2232–2237 (2005)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  25. Porteus, M. H. Mammalian gene targeting with designed zinc finger nucleases. Mol. Ther. 13, 438–446 (2006)

    Article  CAS  PubMed  Google Scholar 

  26. Moehle, E. A. et al. Targeted gene addition into a specified location in the human genome using designed zinc finger nucleases. Proc. Natl Acad. Sci. USA 104, 3055–3060 (2007)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lombardo, A. et al. Gene editing in human stem cells using zinc finger nucleases and integrase-defective lentiviral vector delivery. Nature Biotechnol. 25, 1298–1306 (2007)

    Article  CAS  Google Scholar 

  28. Perez, E. E. et al. Establishment of HIV-1 resistance in CD4+ T cells by genome editing using zinc-finger nucleases. Nature Biotechnol. 26, 808–816 (2008)

    Article  CAS  Google Scholar 

  29. Wei, F. et al. Physical and genetic structure of the maize genome reflects its complex evolutionary history. PLoS Genet. 3, e123 (2007)

    Article  PubMed  PubMed Central  Google Scholar 

  30. Maeder, M. L. et al. Rapid “open-source” engineering of customized zinc-finger nucleases for highly efficient gene modification. Mol. Cell 31, 294–301 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Isalan, M., Klug, A. & Choo, Y. A rapid, generally applicable method to engineer zinc fingers illustrated by targeting the HIV-1 promoter. Nature Biotechnol. 19, 656–660 (2001)

    Article  CAS  Google Scholar 

  32. Doyon, Y. et al. Heritable targeted gene disruption in zebrafish using designed zinc-finger nucleases. Nature Biotechnol. 26, 702–708 (2008)

    Article  CAS  Google Scholar 

  33. Maddaloni, M. et al. The sequence of the zein regulatory gene opaque-2 (O2) of Zea mays . Nucleic Acids Res. 17, 7532 (1989)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Fang, J. et al. Stable antibody expression at therapeutic levels using the 2A peptide. Nature Biotechnol. 23, 584–590 (2005)

    Article  CAS  Google Scholar 

  35. Miller, J. C. et al. An improved zinc-finger nuclease architecture for highly specific genome editing. Nature Biotechnol. 25, 778–785 (2007)

    Article  CAS  Google Scholar 

  36. Christensen, A. H., Sharrock, R. A. & Quail, P. H. Maize polyubiquitin genes: structure, thermal perturbation of expression and transcript splicing, and promoter activity following transfer to protoplasts by electroporation. Plant Mol. Biol. 18, 675–689 (1992)

    Article  CAS  PubMed  Google Scholar 

  37. McElroy, D., Zhang, W., Cao, J. & Wu, R. Isolation of an efficient actin promoter for use in rice transformation. Plant Cell 2, 163–171 (1990)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wohlleben, W. et al. Nucleotide sequence of the phosphinothricin N-acetyltransferase gene from Streptomyces viridochromogenes Tü494 and its expression in Nicotiana tabacum . Gene 70, 25–37 (1988)

    Article  CAS  PubMed  Google Scholar 

  39. Sambrook, J., Fritsch, E. F. & Maniatis, T. Molecular Cloning: a Laboratory Manual 2nd edn (Cold Spring Harbor Laboratory Press, 1989)

    Google Scholar 

  40. Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2 - ΔΔ C t method. Methods 25, 402–408 (2001)

    Article  CAS  PubMed  Google Scholar 

  41. Armstrong, C., Green, C. & Phillips, R. Development and availability of germplasm with high type II culture formation response. Maize Genet. Coop. News Lett. 65, 92–93 (1991)

    Google Scholar 

  42. Petolino, J. F., Hopkins, N. L., Kosegi, B. D. & Skokut, M. Whisker-mediated transformation of embryogenic callus of maize. Plant Cell Rep. 19, 781–786 (2000)

    Article  CAS  PubMed  Google Scholar 

  43. Skoglund, E., Carlsson, N.-G. & Sandberg, A.-S. Determination of isomers of inositol mono- to hexaphosphates in selected foods and intestinal contents using high-performance ion chromatography. J. Agric. Food Chem. 45, 431–436 (1997)

    Article  CAS  Google Scholar 

  44. Stevenson-Paulik, J. et al. Generation of phytate-free seeds in Arabidopsis through disruption of inositol polyphosphate kinases. Proc. Natl Acad. Sci. USA 102, 12612–12617 (2005)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  45. Buscher, B. A. P., van der Hoeven, R. A. M., Tjaden, U. R., Andersson, E. & Van der Greef, J. Analysis of inositol phosphates and derivatives using capillary zone electrophoresis-mass spectrometry. J. Chromatogr. A 712, 235–243 (1995)

    Article  CAS  Google Scholar 

  46. Hsu, F.-F., Turk, J. & Gross, M. L. Structural distinction among inositol phosphate isomers using high-energy and low-energy collisional-activated dissociation tandem mass spectrometry with electrospray ionization. J. Mass Spectrom. 38, 447–457 (2003)

    Article  ADS  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to thank numerous colleagues at Dow AgroSciences and Sangamo BioSciences for discussions regarding this project, the DAS Gamma group for statistics support, Sangamo’s production group for technical support and A. Klug for a critical reading of the manuscript. We are also grateful to W. Kleschick, D. Kittle and E. Lanphier for encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vipula K. Shukla.

Ethics declarations

Competing interests

The authors are current or recent employees of Dow AgroSciences, LLC, a wholly owned subsidiary of the Dow Chemical Company, or Sangamo BioSciences. These companies may gain or lose financially through this publication. The authors may also own stocks or shares in companies including the Dow Chemical Company and Sangamo BioSciences, that may gain or lose financially through publication of this article. Several authors are inventors on patents or patent applications whose value may be affected by this publication.

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1-5 with Legends, Supplementary Tables 1-6 and a Supplementary Discussion. (PDF 774 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shukla, V., Doyon, Y., Miller, J. et al. Precise genome modification in the crop species Zea mays using zinc-finger nucleases. Nature 459, 437–441 (2009). https://doi.org/10.1038/nature07992

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature07992

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing